DOI QR코드

DOI QR Code

Effect of Space Holder Content on Pore Size and Distribution in HA/β-TCP Composites Consolidated by SPS

SPS로 제조된 HA/β-TCP 복합재의 기공의 크기와 분포에 미치는 지지체 량의 영향

  • Lee, Tack (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Woo, Kee-Do (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kang, Dong-Soo (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Lee, Hae-Cheol (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Jang, Jun-Ho (Division of Advanced Materials Engineering, Chonbuk National University)
  • 이택 (전북대학교 공과대학 신소재공학부) ;
  • 우기도 (전북대학교 공과대학 신소재공학부) ;
  • 강동수 (전북대학교 공과대학 신소재공학부) ;
  • 이해철 (전북대학교 공과대학 신소재공학부) ;
  • 장준호 (전북대학교 공과대학 신소재공학부)
  • Received : 2015.01.09
  • Accepted : 2015.03.03
  • Published : 2015.04.27

Abstract

Ceramics biomaterials are useful as implant materials in orthopedic surgery. In this study, porous HA(hydroxyapatite)/${\beta}$-TCP(tricalcium phosphate) composite biomaterials were successfully fabricated using HA/${\beta}$-TCP powders with 10-30 wt% $NH_4HCO_3$ as a space holder(SH) and $TiH_2$ as a foaming agent, and MgO powder as a binder. The HA/${\beta}$-TCP powders were consolidated by spark plasma sintering(SPS) process at $1000^{\circ}C$ under 20 MPa conditions. The effect of SH content on the pore size and distribution of the HA/${\beta}$-TCP composite was observed by scanning electron microscopy(SEM) and a microfocus X-ray computer tomography system(SMX-225CT). These microstructure observations revealed that the volume fraction of the pores increased with increasing SH content. The pore size of the HA/${\beta}$-TCP composites is about $400-500{\mu}m$. The relative density of the porous HA/${\beta}$-TCP composite increased with decreasing SH content. The porous HA/${\beta}$-TCP composite fabricated with 30%SH exhibited an elastic modulus similar to that of cortical bone; however, the compression strength of this composite is higher than that of cortical bone.

Keywords

References

  1. A. Amir, B. S. Abu, M. Norhamidi, S. Junaidi and I. R. Mohd, Mater. Des., 55, 165 (2014). https://doi.org/10.1016/j.matdes.2013.09.045
  2. C. P. A. T. Klein, A. A. Driessen, K. de Groot and J. Biomed. Mater. Res., 17, 769 (1983). https://doi.org/10.1002/jbm.820170505
  3. H. U. Cameron, R. M. Pillar, I. Macnab and J. Biomed. Mater. Res., 10, 295 (1976). https://doi.org/10.1002/jbm.820100210
  4. C. B. Lim, D. H. Yeo, H. S. Shin and Y. S. Cho, J. Kor. Ceram. Soc., 48, 604 (2011). https://doi.org/10.4191/kcers.2011.48.6.604
  5. S. Naddaf Dezfuli, S. K. Sadrnezhaad, M. A. Shokrgozar and S. Bonakdar, J. Mater. Sci.: Mater. Med., 23, 2483 (2012). https://doi.org/10.1007/s10856-012-4706-3
  6. K. D. Woo, D. S. Kang, E. P. Kwon, M. S. Moon, I. J. Shon and Z. Liu, J. Kor. Inst. Met. Mater., 47, 508 (2009).
  7. Y. Q. Wang, J. Tao, J. L. Zhang and T. Wang, Trans. Nonferrous Met. Soc. China, 21, 1074 (2011). https://doi.org/10.1016/S1003-6326(11)60824-8
  8. Y. W. Gu, M. S. Yong, B. Y. Tay and C. S. Lim, Mater. Sci. Eng. C, 29, 1515 (2009). https://doi.org/10.1016/j.msec.2008.11.003
  9. D. B. Liu, Y. Huang and P. B. Prangnell, Mater. Lett., 82, 7 (2012). https://doi.org/10.1016/j.matlet.2012.05.035
  10. M. N. Bureau, J. Denault and J. G. Legoux, WO20060-74550A1, U.S. (2006).