DOI QR코드

DOI QR Code

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel

  • Lee, Gihoon (Department of Chemical Engineering, Myongji University) ;
  • Kang, Ji Yeon (Department of Chemical Engineering, Myongji University) ;
  • Jeong, Yeojin (Department of Chemical Engineering, Myongji University) ;
  • Jung, Ji Chul (Department of Chemical Engineering, Myongji University)
  • Received : 2015.03.17
  • Accepted : 2015.04.03
  • Published : 2015.04.27

Abstract

To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.

Keywords

References

  1. S. M. Ibrhim, Korean J. Chem. Eng., 31, 1792 (2014). https://doi.org/10.1007/s11814-014-0081-8
  2. A. Shukla, S. Karmarkar and R. B. Biniwale, Int. J. Hydrogen Energy, 37, 3719 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.107
  3. M. P. Lazaro, E. Garcia-Bordeje, D. Sebastian, M. J. Lazaro and R. Moliner, Catal. Today, 138, 203 (2008). https://doi.org/10.1016/j.cattod.2008.05.011
  4. R. B. Biniwale, S. Rayalu, S. Devotta and M. Ichikawa, Int. J. Hydrogen Energy, 33, 360 (2008). https://doi.org/10.1016/j.ijhydene.2007.07.028
  5. D. sbastian, C. Alegre, L. Calvillo, M. Perez, R. Moliner and M. Laazaro, Int. J. Hydrogen Energy, 39, 4109 (2014). https://doi.org/10.1016/j.ijhydene.2013.04.016
  6. G. W. H. Scherer, E. Newson and A. Wokaun, Int. J. Hydrogen Energy, 24, 1157 (1999). https://doi.org/10.1016/S0360-3199(98)00177-3
  7. S. Hodoshima, H. Arai, S. Takaiwa, Y. Saito, Int. J. Hydrogen Energy, 28, 1255 (2003). https://doi.org/10.1016/S0360-3199(02)00250-1
  8. S. Hodoshima, S. Takaiwa, A. Shono, K. Satoh and Y. Saito, Appl. Catal. A: Gen., 283, 235 (2005). https://doi.org/10.1016/j.apcata.2005.01.010
  9. N. Jiang, K. S. R. Rao, M. Jin and S. Park, Appl. Catal. A: Gen., 425-426, 62 (2012). https://doi.org/10.1016/j.apcata.2012.03.001
  10. P. Li, Y. Huang, J. Zhu, T. Zhao and X. Zhou, Catal. Commun., 10, 815 (2009). https://doi.org/10.1016/j.catcom.2008.12.004
  11. B. Fang and L. Binder, ElectoChim. Acta, 52, 6916 (2007). https://doi.org/10.1016/j.electacta.2007.05.004
  12. H. W. Park, U. G. Hong, Y. J. Lee and I. K. Song, Appl. Catal. A: Gen., 409-410, 167 (2011). https://doi.org/10.1016/j.apcata.2011.09.043
  13. J. Wang and S. Kaskel, J. Mater. Chem., 45, 23710 (2012).
  14. S. H. Kwon, E. Lee, B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim and J. C. Jung, Curr. Appl. Phys., 14, 603 (2014). https://doi.org/10.1016/j.cap.2014.02.010
  15. S. Hodoshima, H. Arai and Y. Saito, Int. J. Hydrogen Energy, 28, 197 (2003). https://doi.org/10.1016/S0360-3199(02)00032-0

Cited by

  1. Pt@Cu/C Core-Shell Catalysts for Hydrogen Production Through Catalytic Dehydrogenation of Decalin vol.26, pp.1, 2016, https://doi.org/10.3740/MRSK.2016.26.1.17