DOI QR코드

DOI QR Code

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh

와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험

  • Kim, Sang-Hee (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Hong, Sung-Gul (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Yun, Hyun-Do (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Gyu-Yong (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kang, Thomas H.K. (Dept. of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2014.07.31
  • Accepted : 2014.11.24
  • Published : 2015.04.30

Abstract

This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

본 실험적 연구는 고속 비상체에 의한 충돌하중을 받는 강섬유보강콘크리트 패널의 내충격성을 파악하는데 그 목적이 있다. 본 실험에서는 또한 와이어매쉬 보강 유무에 따른 내충격성을 파악하였다. 강섬유 혼입률, 와이어매쉬 보강, 패널두께, 충돌속도, 골재크기를 변수로 조절하면서 고속충격을 가하여 실험체의 성능을 비교하였다. 강섬유의 혼입으로 인한 관입깊이에 대한 내충격성 향상은 미흡하였지만, 배면박리와 관통에 대해서는 내충격성 향상에 효과가 있었다. 이는 강섬유가 콘크리트매트릭스 내에서 가교효과를 발현하였기 때문이다. 그리고 와이에매쉬로 보강하였을 때 전면과 배면의 파괴면적은 감소하였고 관통과 배면박리에 대해서는 효과적이었지만, 관입깊이 억제력 향상에는 미흡하였다. 한편, 일부 실험체에서는 배면의 피복층을 따라서 쪼갬부착파괴가 발생한 경우도 있었지만, 대체적으로 와이어매쉬는 충격에 의한 패널의 휨변형을 억제하는 효과를 보였다. 관입 깊이의 관점에서는 20 mm 골재의 사용이 내충격성 향상에 효과적이었고, 전면과 배면의 파괴면적 감소 측면에서는 8 mm 골재의 사용이 20 mm 골재와 비교하여 보다 효과적이었다.

Keywords

References

  1. Li, Q. M., Reid, S. R., Wen, H. M., and Telford, A. R., "Local Impact Effects of Hard Missiles on Concrete Targets", International Journal of Impact Engineering, Vol. 32, 2005, pp. 224-284. https://doi.org/10.1016/j.ijimpeng.2005.04.005
  2. Hrynyk, T. D. and Vecchio, F. J., "Behavior of Steel Fiber-Reinforced Concrete Slabs under Impact Load", ACI Structural Journal, Vol. 111, No. 5, 2014, pp. 1213-1224.
  3. Dancygier, A. N. and Yankelevsky, D. Z., "High Strength Concrete Response to Hard Projectile Impact", International Journal of Impact Engineering, Vol. 18, No. 5. 1996.
  4. Almusallam, T. H., Siddiqui, N. A., Iqbal, R. A., and Abbas, H., "Response of Hybrid-fiber Reinforced Concrete Slabs to Hard Projectile Impact", International Journal of Impact Engineering, Vol. 58, 2013, pp. 17-30. https://doi.org/10.1016/j.ijimpeng.2013.02.005
  5. Mohammaad, Y., Carkon-A., R., Singh, S. P., and Kaushik, S. K., "Impact Resistance of Steel Fibrous Concrete Containing Fibrous of Mixed Aspect Ratio", Construction and Building Materials, Vol. 23, 2009, pp. 183-189. https://doi.org/10.1016/j.conbuildmat.2008.01.002
  6. Almansa, E. M. and Canovas, M. F., "Behavior of Normal and Steel Fiber-Reinforced Concrete under Impact of Small Projectiles", Cements and Concrete Research, Vol. 29, 1999, pp. 1807-1814. https://doi.org/10.1016/S0008-8846(99)00174-X
  7. Kim, S., Kang, T. H. K., Hong, S. G., Kim, G. Y., and Yun H. D., "Impact Resistance of Steel Fiber-Reinforced Concrete Panels under High Velocity Impact-Load", Journal of Korea Concrete Institute, Vol. 26, No. 6, 2014, pp. 731-739 (in Korean) https://doi.org/10.4334/JKCI.2014.26.6.731
  8. Yazici, S., Arel, H. S., and Tabak, V., "The Effects of Impact Loading on The Mechanical Properties of the SFRCs", Construction and Building Materials, Vol. 41, 2013, pp. 68-72. https://doi.org/10.1016/j.conbuildmat.2012.11.095
  9. Kim, G. Y., Nam, J. S., and Miyauchi, H., "Evaluation on Impact Resistance Performance of Fiber Reinforced Mortar under High-Velocity Impact of Projectile", Journal of Korea Architecture Institute, Vol. 27, No. 9, Sep. 2011, pp. 101-108 (in Korean).
  10. Kim, H.-S., Nam, J.-S., Hwang, H.-K., Jeon, J.-K., and Kim, G.-Y., "A Study on the Penetration Resistance and Spalling Properties of High Strength Concrete by Impact of High Velocity Projectile", Journal of the Korea Concrete Institute, Vol. 25, No. 1, 2013, pp. 99-106 (in Korean). https://doi.org/10.4334/JKCI.2013.25.1.099
  11. Zhang, M. H., Shim, V. P. W., Lu, G., and Chew, C. W., "Resistance of High-Strength Concrete to Projectile Impact", International Journal of Impact Engineering, Vol. 31, No. 7, Aug. 2005, pp. 825-841. https://doi.org/10.1016/j.ijimpeng.2004.04.009
  12. Beppu, M., Miwa, K., Itoh, M., Katayama, M., and Ohno, T., "Damage Evaluation of Concrete Plates by High-Velocity Impact", International Journal of Impact Engineering, Vol. 35, No. 12, Dec. 2008, pp. 1419-1426. https://doi.org/10.1016/j.ijimpeng.2008.07.021
  13. Hsu, L. S. and Hsu, C.-T. T., "Stress-Strain Behavior of Steel-Fiber High-Strength Concrete under Compression", ACI Structural Journal, Vol. 91, No. 4, 1994, pp. 448-457.
  14. Lee, H.-H. and Lee. H. J., "Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume Fraction", Journal of the Korea Concrete Institute, Vol. 16, No. 6, 2004, pp. 759-766 (in Korean). https://doi.org/10.4334/JKCI.2004.16.6.759
  15. ACI Committee 544, ACI544.4R-88 (Reapproved 2009) Design Considerations for Steel Fiber Reinforced Concrete, American Concrete Institute, 1988.
  16. Ezeldin, A. S., and Balaguru, P. N., "Normal- and High-strength Fiber-Reinforced Concrete under Compression", Journal of Materials in Civil Engineering, Vol. 4, No. 4, Nov. 1992, pp. 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  17. ACE, Fundamentals of Protective Structure. Report AT120 AT1207821, Army Corps of Engineer, Office of the Chief of Engineers, 1946.
  18. NDRC, Effect of Impact and Explosion, Summary Technical Report of Division 2, vol. 1, National Defence Research Committee, 1946.
  19. Hughes, G., " Hard Missile Impact on Reinforced Concrete", Nuclear Engineering and Design, Vol. 77, 1984, pp. 23-35. https://doi.org/10.1016/0029-5493(84)90058-X
  20. Haldar, A. and Hamieh, H. A., " Local Effect of Solid Missiles on Concrete Structures," Journal of Structural Engineering, Vol. 110, No. 5, 1984, pp. 948-960. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(948)

Cited by

  1. Analysis of High Velocity Impact on SFRC Panels Using ABAQUS vol.28, pp.2, 2016, https://doi.org/10.4334/JKCI.2016.28.2.141
  2. concentrations vol.7, pp.3-4, 2016, https://doi.org/10.1080/2093761X.2016.1237393