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Abstract—As smartphones support a variety of 
applications and their memory demand keeps 
increasing, the design of an efficient memory 
management policy is becoming increasingly 
important. Meanwhile, as nonvolatile memory (NVM) 
technologies such as PCM and STT-MRAM have 
emerged as new memory media of smartphones, 
characterizing memory references for NVM-based 
smartphone memory systems is needed. For the deep 
understanding of memory access features in 
smartphones, this paper performs comprehensive 
analysis of memory references for various 
smartphone applications. We first analyze the 
temporal locality and frequency of memory reference 
behaviors to quantify the effects of the two properties 
with respect to the re-reference likelihood of pages. 
We also analyze the skewed popularity of memory 
references and model it as a Zipf-like distribution. We 
expect that the result of this study will be a good 
guidance to design an efficient memory management 
policy for future smartphones.     
 
Index Terms—Smartphone, NVM, write references, 
temporal locality, Zipf-like distribution   

I. INTRODUCTION 

With the explosive dissemination of smartphones 

around the world, smartphones support a variety of 
applications and their memory demand also keeps 
increasing. Accordingly, design of an efficient memory 
management policy in smartphones is becoming 
increasingly imporant. In particular, as nonvolatile 
memory (NVM) technologies such as PCM (Phase 
Change Memory) and STT-MRAM (Spin Transfer 
Torque Magnetic RAM) have emerged and will be 
candidates of new memory media in smartphones, 
characterizing memory references for these emerging 
NVM-based smartphone memory systems is needed.  

NVM has desirable properties, such as high density, 
low leakage power, and non-volatility, to be adopted as a 
memory medium of smartphones. However, current 
NVM technologies have some weaknesses in their write 
operations to substitute DRAM memory in its entirety. In 
case of PCM, a write access time is about 6-10 times 
slower than that of DRAM and the number of write 
operations allowed to each PCM cell is limited to 107-108 
[1-3]. In case of STT-MRAM, write energy is 5-10 times 
higher than that of DRAM [4, 5]. Therefore, mitigating 
costly write operations on PCM and STT-MRAM is a 
crucial factor and write references in memory should be 
carefully managed. To dilute the effect of write 
operations in NVM-based memory systems, 
comprehensive analysis of memory references in 
smartphones is needed.  

To do this, we develop memory trace collectors and 
extract memory reference traces from various kinds of 
smartphone applications. We, then, analyze the collected 
memory reference traces. Specifically, we analyze the 
memory references in terms of temporal locality and 
reference frequency to quantify their effects on the 
likelihood of future references. Specifically, we focus on 
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the estimation of future write references. This result can 
be applied to the design of a memory management policy 
(e.g., replacement and allocation) in the hybrid memory 
architecture that uses NVM and DRAM together. For 
example, considering our analysis results, the policy 
could be designed to absorb as many write references as 
possible with DRAM in order to alleviate the weaknesses 
of NVM in writes.  

We also analyze the skewed popularity of memory 
references in smartphone applications and model it as a 
Zipf-like distribution. Through this analysis, we can find 
the working set size of an application, and also determine 
an appropriate memory size of smartphones. We also 
expect that an efficient memory management policy for 
smartphones can be designed.  

The remainder of this paper is organized as follows. 
Section II briefly summarizes how memory traces can be 
collected. In Section III, we capture page reference 
characteristics of virtual memory systems in terms of 
temporal locality and frequency. Section IV presents the 
analysis of skewed page popularity in memory references 
and models it as a Zipf-like distribution. We summarize 
the analysis and note some implications in Section V. 
Finally, we conclude this paper in Section VI.  

II. TRACE COLLECTION PROCESS 

To extract memory reference traces in smartphone 
environments, we implement trace extraction codes in 
Valgrind 3.8.1 toolset [6]. Specifically, we inject trace 
collector and analyzer in cg_sim.c of Cachegrind. The 
target system is ODROID-A4 Android smartphone and 
we filter out memory references that are accessed 
directly from the cache memory layers (L1, L2, and 

LLC) and gather only the memory references observed at 
the main memory system.  

To explore a wide range of smartphone applications, 
we capture memory access traces from six smartphone 
applications used on Android, namely, the angrybirds a 
game, the facebook a social network service, the 
mxplayer a media player, the youtube a video-streaming 
service using Internet, the farmstory a network game, and 
the Android web browser. We also gather traces for 
mixed workloads in multiprogramming environments. 
Specifically, multi1 concurrently executes web browser, 
youtube, and angrybirds. Multi2 executes web browser, 
mxplayer, facebook, and farmstory concurrently. 

Our trace analyzer shows the total memory footprint, 
total write footprint, total reference count, ratio of 
operations (read vs. write), type of references, etc. The 
characteristics of these traces are given in Table 1. 

III. ANALYSIS OF TEMPORAL LOCALITY AND 

REFERENCE FREQUENCY 

In this section, we analyze the characteristics of 
memory references in various smartphone applications in 
terms of temporal locality and reference frequency.   

As large energy consumption (STT-MRAM) and long 
latency (PCM) during a write operation is an important 
issue in NVM-based memory systems, we separately 
analyze the characteristics of write references in terms of 
temporal locality and reference frequency. Also, it is not 
clearly known whether considering read and write 
histories together or considering write history alone is 
more effective in estimating future write references in 
memory systems. Hence, in this section, we compare the 
effectiveness of using write history alone and using both 

 
Table 1. Summary of memory reference characteristics collected in Android smartphones 

Memory access counts 
Traces 

Memory 
footprint 

(KB) 

Memory footprint 
by writes 

(KB) 

Ratio of 
operations 

(reads:  writes) Total Instruction read Data read Data write 

angrybirds 78,782 46,821 3.50 : 1 18,201,717 980,312 13,387,756 3,822,479 
mxplayer 81,838 48,443 3.66 : 1 18,190,547 567,456 13,851,914 3,782,347 
youtube 70,287 41,930 4.44 : 1 18,196,504 993,316 14,040,959 3,162,229 

web browser 266,092 184,401 4.11 : 1 20,999,999 1,622,628 15,272,935 4,104,436 
facebook 203,431 98,414 5.67 : 1 13,653,055 486,165 11,121,174 2,045,716 
farmstory 55,030 30,159 6.24 : 1 15,224,670 447,297 12,675,555 2,101,818 

multi1 128,974 62,980 6.61 : 1 19,199,986 738,111 15,941,686 2,520,189 
multi2 206,684 106,160 6.88 : 1 35,499,985 1,370,884 29,627,038 4,502,063 
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read/write histories together in terms of temporal locality 
and frequency to make more accurate estimations of 
future write references. 

 
1. Temporal Locality  

 
Figs. 1 and 2 show the effect of temporal locality on 

page references. In the figure, the x-axis represents page 
ranking (i.e., the LRU stack distance) in the LRU list. For 
example, rank 1 refers to the page at the most recently 
referenced position in the LRU list. Increase in ranking 
along the x-axis indicates an increase in the LRU stack 
distance, that is, longer time has passed since the pages 
have been referenced. The black plots, the gray plots, and 
the blue plots represent results based on page ranking of 

write history alone, both read/write history, and read 
history alone, respectively. The y-axis represents the 
distribution of references for the page ranking in the x-axis. 
Figs. 1 and 2 show the distribution of write references and 
total references (read+write), respectively.  

As shown in the figures, the shape of the curves can be 
modeled as a monotonic decreasing function, implying 
that a more recently referenced page is more likely to be 
re-referenced in the near future. 

Contrasting write temporal locality based on write 
history (black plot), that based on both read/write 
histories (gray plot), and that based on read history (blue 
plot) in Fig. 1, using both read and write histories (gray 
plot) estimates future write references better within the 
top 10 rankings. This implies that when a DRAM in the 

 

         (a) angrybirds              (b) mxplayer 
 

          (c) youtube             (d) web browser 
 

 

 

         (e) facebook               (f) farmstory 
 

 

 

          (g) multi1                 (h) multi2 

Fig. 1. Distribution of page write references according to the 
temporal locality ranking of pages. 
 

 

         (a) angrybirds              (b) mxplayer 
 

 

(c) youtube              (d) web browser 
 

 

(e) facebook               (f) farmstory 
 

 

(g) multi1                 (h) multi2 

Fig. 2. Distribution of total references according to the 
temporal locality ranking of pages. 
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hybrid memory architecture is so small to hold the 
highest ranking pages, using both read and write histories 
is more efficient than using only write history in 
estimating future writes. However, beyond these top 
rankings using write history alone and using both read 
and write histories show similar results. Using read 
history alone does not perform well in estimating write 
references as shown in Fig. 1.  

When considering the distribution of total references 
as shown in Fig. 2, page ranking based on write history 
alone (black plot), both read/write histories (gray plot), 
and read history alone (blue plot) show similar results. 
However, when we limit only top 10 rankings, using both 
read/write histories estimates future memory references 
the best, and using write history alone performs the worst.  

 
2. Reference Frequency  

 
Similarly to temporal locality, the effect of frequency 

on page references can be characterized through page 
ranking. Here, the page with the highest rank 1 is the 
page that has the highest frequency count. 

We can consider two different types of frequency. The 
first is the total frequency, which counts the total number 
of references that appear in the trace, and the second is 
the so-far-frequency, which counts the number of 
references that has occurred to the current point. We use 
the latter in order to observe the impact of frequency on 
estimation of a page’s re-reference likelihood each time 
in comparison to temporal locality. To do this, we 
maintain the ranking of pages according to their past 
frequency counts and examine the number of references 
that occur again for each ranking.  

In Figs. 3 and 4, the x-axis represents the ranking of pages 
based on their past write counts (black plot), read/write 
counts (gray plot), and read counts (blue plot). The y-axis 
represents the number of references that has occurred on 
that ranking. To construct the curve, we maintain the 
ranking of the pages, and as a page in a certain ranking is 
referenced, we increase the value of the y-axis for that 
ranking by one, possibly resulting in a reordering of the 
page rankings. Figs. 3 and 4 show the distribution of write 
references and total (read+write) references, respectively. 
Note that though the range of the y-axis is different for Figs. 
1 through 4, the total number of references will be the same 
for each of the corresponding workloads. 

As shown in Fig. 3, using write history alone (black 
plot) leads to a better estimation of future write 
references than using both read and write histories (gray 
plot) or using read history (blue plot). This implies that 
when considering the frequency property as an estimator 
of future write references, exploiting only write reference 
history would be a better choice. This is different to the 
temporal locality case, in which considering both read 
and write histories together leads to a better estimation of 
future write references than considering write history 
only. In contrast, as shown in Fig. 4, using write count 
only (black plot) and using both read/write counts (gray 
plot) show similar results when estimating total memory 
references including both reads and writes. However, as 
the ranking becomes lower, using both read and write 

 

         (a) angrybirds               (b) mxplayer 
 

 

          (c) youtube              (d) web browser 
 

 

          (e) facebook              (f) farmstory 
 

 

           (g) multi1                 (h) multi2 

Fig. 3. Distribution of write references according to the 
reference frequency ranking of pages. 
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counts will be more effective.  
 

3. Comparing Temporal Locality and Frequency 
 
Let us now compare the temporal locality and 

frequency based estimators. Based on the analysis result 
of Figs. 1 through 4, we use write history alone in 
estimating future write references (Fig. 5), and both read 
and write histories in estimating all references including 
reads and writes (Fig. 6). As shown in the figure, the 
gray plots (temporal locality) are located above the black 
plots (frequency) in high rankings. This indicates that 
temporal locality based estimations are more accurate 
compared to frequency based estimations in high 
rankings. However, it should be noted that frequency 

based estimations on the pages of low ranks exhibit 
larger reference counts than that of temporal locality 
based estimations.  

This indicates that if we want to maximize the 
expected number of hits by preserving a certain number 
of pages in limited memory, it would be beneficial to 
retain the highest ranking pages of temporal locality 
based estimations first, and then retain some high ranking 
pages of frequency based estimations. When DRAM and 
NVM hybrid memory is used, DRAM memory can 
absorb most write references by preserving the highest 
ranking pages of temporal locality first, and then some 
high ranking pages of frequency in DRAM. 

This result contradicts the analysis of desktop 
applications, in which frequency is much stronger than 

 

         (a) angrybirds               (b) mxplayer 
 

 

          (c) youtube              (d) web browser 
 

 

          (e) facebook               (f) farmstory 
 

 

           (g) multi1                 (h) multi2 

Fig. 4. Distribution of total references according to the 
reference frequency ranking of pages. 

 

 

         (a) angrybirds               (b) mxplayer 
 

 

          (c) youtube               (d) web browser 
 

 

          (e) facebook               (f) farmstory 
 

           (g) multi1                  (h) multi2 

Fig. 5. Comparison of temporal locality and reference 
frequency with respect to the estimation of future write 
references. 
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temporal locality [7]. We cannot pinpoint the exact 
reason but it may be due to the read-intensive memory 
workload characteristics of smartphone environments.   

In summary, temporal locality is generally a better 
estimator than frequency in predicting the re-reference 
likelihood of future references in smartphone memory 
systems, but combining the two properties appropriately 
leads to even better results. 

IV. ANALYSIS OF SKEWED PAGE POPULARITY 

IN MEMORY REFERENCES 

1. Cumulative Reference Distribution 
 
In this section, we analyze the skewed popularity of 

memory references in smartphone applications. This is a 
performed to find the working set size of each 
application, and also to determine an appropriate 
memory size for a smartphone when the 
multiprogramming degree increases. It will be also 
helpful to determine the ratio of DRAM and NVM that 
will be used for emerging smartphone architectures. 
Specifically, as PCM is slow in write operations and 
STT-MRAM requires large write energy, a certain 
amount of DRAM is needed and our study will give 
some insight to find an appropriate DRAM size. To this 
end, we analyze memory references for six applications, 
and show the cumulative distribution of pages sorted by 
their popularity rankings.  

In Fig. 7, we illustrate the cumulative frequency of 

 

         (a) angrybirds               (b) mxplayer 
 

 

          (c) youtube              (d) web browser 
 

 

          (e) facebook               (f) farmstory 
 

           (g) multi1                 (h) multi2 

Fig. 6. Comparison of temporal locality and reference 
frequency with respect to the estimation of future references. 

  

         (a) angrybirds              (b) mxplayer 
 

  

          (c) youtube             (d) web browser 
 

  

          (e) facebook              (f) farmstory 
 

  

(g) multi1                (h) multi2 

Fig. 7. Cumulative distribution of memory references sorted by 
page ranking. 

 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.2, APRIL, 2015 229 

 

references for the fraction of the pages referenced. In this 
analysis, we use “total frequency” instead of “so-far- 
frequency.” Note that the pages shown in the x-axis are 
sorted into a decreasing order based on the reference 
counts. The figure shows that 20% of the top ranking 
pages account for 50-60% of write references, and 80-
90% of total references. In case of farmstory and 
facebook, the popularity skew of write references is 
strong such that 10% of the top pages account for about 
40-50% of total write references. This shows the 
evidence for the skewed popularity of pages. It also 
indicates that a certain small amount of DRAM can 
absorb most of write references.  

 
2. Modeling as a Zipf-like Distribution 

 
Our second analysis focuses on the modeling of 

memory references for smartphone applications. Fig. 8 
shows the number of times that a page has been 
referenced for the ranking of the page, where rank 1 is 
the most frequently referenced page. Note that both axes 
in the figure are in log scale, and we also use “total 
frequency” in this analysis.  

The curve in the figure shows that references are 
excessively biased to some hot pages. The left part of the 
curves can be well modeled by a straight line (denoted as 
red and blue lines for write and total references), which 
implies that the reference frequency of the i-th popular 
page (i.e., rank i) is proportional to 1/ib, where b is the 
slope of the line. This type of distribution is called a 
Zipf-like distribution [8].  

The value of b, which is known as a skew factor of a 
Zipf-like distribution, is given in Table 2. We obtain the 
values through curve-fitting analysis. When it approaches 
1, the popularity of pages is heavily skewed. As shown in 
the table, the skew factor is in the range of 0.55 to 0.65 
for write references and 0.35 to 0.53 for total references 
according to applications. As the skew factor of web 
pages is known to be about 0.8, the bias is relatively 
weak in our analysis but it still exhibits high skewness 
[9]. Moreover, as shown in Fig. 8, as the curve-fitting 
represents only for the left part of the curve, the 
popularity skew will be higher when considering the 
remaining part (tail) of the curve.  

When comparing total references and write references, 
the cumulative distribution in Fig. 7 indicates that the 

skewness of write references is weaker than that of total 
or read references. However, the Zipf parameter modeled 
in Table 2 indicates that write references have large skew 
factors. This may seem strange but it is because the 

 

          (a) angrybirds             (b) mxplayer 
 

 

          (c) youtube              (d) web browser 
 

 

          (e) facebook              (f) farmstory 
 

 

            (g) multi1                 (h) multi2 

Fig. 8. Distribution of memory references according to page 
ranking (Zipf-like distribution) 

 
Table 2. Zipf parameters for each smartphone applications 

 read/write references write references 
angrybirds 0.4980 0.5800 
mxplayer 0.3642 0.5631 
youtube 0.4953 0.5870 

web browser 0.4917 0.5808 
facebook 0.5283 0.6525 
farmstory 0.5182 0.6346 

multi1 0.5068 0.6223 
multi2 0.5138 0.6322 
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curve-fitting is performed only for the left part of the 
graphs. This implies that the popularity skew of write 
references is much higher when we consider only top 
rankings. In reality, if we see only the leftmost part of the 
graphs in Fig. 7, the slope of write references (red plot) is 
much steeper than that of total references (black plot). 
This can be seen apparently in Figs. 7(e)-(h). 

V. SUMMARY AND IMPLICATIONS  

We performed comprehensive analysis of memory 
references for various smartphone applications. To do 
this, we first gathered real memory reference traces for 
popular smartphone applications and performed various 
analyses on these traces. The results can be summarized 
as follows. 
·Smartphone memory references are all read-

intensive regardless of application types. This is 
different from memory references of desktop 
applications, in which a certain type of write-
intensive applications exists [7].  

·Though smartphone memory references are read-
intensive, more than one half of memory footprints 
accounts for write references. This implies that 
write references are scattered throughout the 
footprint and this makes difficult to manage NVM 
memory systems.  

 
We also identify how to estimate future memory 

references well, especially for writes, in terms of 
temporal locality and reference frequency. For an 
accurate prediction of future memory references, we 
examine the effect of utilizing read history alone, write 
history alone, and both read/write histories, and 
compared them. The results can be summarized as 
follows.  
·In case of temporal locality, using read/write 

histories together is more effective than using write 
history alone in estimating future write references, 
especially for the most recent reference history.  

·In the case of frequency, using write frequency 
alone is more effective than using both read/write 
histories in estimating future write references.  

·When we compare temporal locality and frequency, 
temporal locality is more effective than frequency 

for most cases, but combining the two properties 
appropriately can lead to even better results. In 
comparison with desktop environments, temporal 
locality in smartphone applications is much stronger. 

 
The result of this analysis can be used in estimating 

future write references precisely, thereby absorbing as 
many write references as possible within a DRAM buffer 
through adopting hybrid memory architectures. 

Finally, we analyze the distribution of memory 
references in smartphone environments and model it as a 
Zipf-like distribution. This is important in designing 
memory management techniques of smartphones because 
memory footprint is large and writes are scattered in 
smartphone applications. The results can be summarized 
as follows. 
·References to memory in smartphones are 

excessively biased to some hot pages and can be 
modeled as a Zipf-like distribution. 

·For write references, top 20% of pages account for 
50-60% of all references. In some applications, top 
10% of pages accounts for up to 50% of total write 
references. 

 
We believe that the characterization and analysis study 

presented in this paper can be helpful to smartphone 
vendors as well as researchers related to smartphone 
memory management.  

VI. CONCLUSIONS  

As a DRAM main memory system has faced with 
limitations and challenges such as energy and scalability, 
nonvolatile memory has emerged as a DRAM alternative. 
This trend is expected to adapt in smartphones in the next 
few years. However, write references in nonvolatile 
memory systems should be managed carefully due to 
their high write energy and slow write access time. For 
the deep understanding of memory write access features 
in smartphones, this paper performed comprehensive 
analysis of memory references for representative 
smartphone applications. Specially, we focused on the 
estimation of future write references by quantifying the 
effects of temporal locality and frequency and 
investigated the bias of popularity in memory references. 
Through this analysis, we found which is a better 
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estimator for future write references in terms of temporal 
locality and frequency and also showed an effective 
guidance to estimate the future memory references. This 
result can be utilized in designing an efficient memory 
management policy for future smartphones. Our future 
research will include the memory management 
techniques in NVM-based smartphone memory systems 
by exploiting the results of this study. 
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