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Abstract—In this paper, we propose an efficient fault-
recovery technique for CGRA (Coarse-Grained 
Reconfigurable Architecture) based multi-core 
architecture. The proposed technique is intra/inter-
CGRA co-reconfiguration technique based on a ring-
based sharing fabric (RSF) and it enables exploiting 
the inherent redundancy and reconfigurability of the 
multi-CGRA for fault-recovery. Experimental results 
show that the proposed approaches achieve up to 
73% fault recoverability when compared with 
completely connected fabric (CCF).    
 
Index Terms—Embedded systems, coarse-grained 
reconfigurable architecture (CGRA), multi-core, fault 
tolerant computing   

I. INTRODUCTION 

To guarantee reliability in the embedded system, the 
computing engines such as embedded processors or 
accelerators should be tolerant to prevent 
decommissioning the entire systems from a few failures. 
Coarse-Grained Reconfigurable Architecture (CGRA) 
based multi-core architecture can be considered as a 
suitable solution for the fault-tolerant computing engine 
with the dynamic redundancy [1] because of its inherent 
redundancy and reconfigurability. Fig. 1 shows such an 
example of the CGRA-based multi-core architecture – it 
is composed of four CGRAs and on-chip communication 
architecture like networks-on-chip (NoC) or on-chip bus 

which couples them. However, until now, there have 
been a few research projects [2-4] based on fault-tolerant 
CGRA without exploiting such strengths of CGRA as 
well as their works are limited to single CGRA. 
Therefore, in this paper, we propose an efficient fault- 
recovery technique that enables exploiting the inherent 
redundancy and reconfigurability of the multi-CGRA.  

II. MOTIVATION 

Fig. 2 shows Example#1 that every CGRA is broken 
because a dysfunctional component stops each CGRA 
from working - we assume that the dysfunction 
components have permanent faults. However, we can 
consider recovering the broken CGRAs by replacing the 
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Fig. 1. CGRA-based multi-core architecture. 
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Fig. 2. Example#1: homogeneous 4 CGRAs have 4 faults. 
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dysfunctional components with available ones in other 
CGRAs because the available components are enough to 
revive up to 3 broken CGRAs. However, the 
conventional multi-CGRA organization as Example#1 
does not allow such a recovery process because the 
available components in different CGRAs cannot be 
recombined to form working CGRAs by only on-chip 
communication architecture. It means that such a 
monotonous aggregation of several CGRAs does not 
enable exploiting the inherent redundancy and 
reconfigurability of the multi-CGRA when faults occur. 
Therefore, in the next section, we propose an efficient 
reconfiguration technique on ring-based sharing fabric 
(RSF) for supporting efficient recombination for fault-
recovery. 

III. FAULT-RECOVERY TECHNIQUE ON RING-
BASED SHARING FABRIC (RSF) 

1. Ring-based sharing fabric (RSF) 
 
We hypothesize that a multi-CGRA can support 

component-level inter-CGRA reconfiguration that means 
use of each component is not limited to a CGRA – the 
components means Configuration Memory (CM), Data 
Buffer (DB), or PE Array (PA). Then, the available 
components in different CGRAs can be recombined to 
form working CGRAs for fault-recovery. Therefore, we 
can easily consider a highly flexible fabric for inter-
CGRA reconfiguration as completely connected fabric 
(CCF) that enable any combination of mapping between 
all of the components. However, such a full connectivity 
causes significant area and power overhead with 
increasing the number of CGRAs. Therefore, we propose 
ring-based sharing fabric (RSF) as shown in Fig. 3(b). 
The RSF connects all of the PAs through single-cycle 
interconnections and a DB (or a CM) is shared by two 
adjacent PAs on the RSF. Such connectivity shows 
minimal interconnection overhead even though the 
number of CGRAs increases. In addition, Fig. 3(b) 
represents fault-recovery process on RSF for Example#1. 
It illustrates the RSF that is configured for fault-recovery 
by inter-CGRA reconfiguration – it replaces the 
dysfunctional components with available ones in other 
CGRAs. In this case, the available components are 
recombined to form 3 recovered CGRAs – it is ideal 

fault-recovery case for Example#1. 
 

2. Intra/inter-CGRA co-reconfiguration 
 
The RSF structurally allows that a PA can use up to 

two CMs or two DBs. However, if a PA requires three 
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Fig. 3. Fault-recovery on RSF for Example#1 (a) Example#1: 
homogeneous 4 CGRAs have 4 faults, (b) Inter-CGRA 
reconfiguration on RSF for recovering the faults. 
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Fig. 4. Symbolic representation of kernel running on multi-
CGRA. 
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Fig. 5. Intra/inter-CGRA co-reconfiguration on RSF for fault-
recovery of Example#2 (a) Configuration#1, (b) Configuration#2. 
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CMs/DBs and over, the RSF cannot utilize these CMs 
and DBs. Therefore, our proposed intra/inter-CGRA co-
reconfiguration technique that alleviates such a structural 
limitation of the RSF. Fig. 6 shows Example#2 that a 
working PA is not connected with an available DB on 
RSF when faults occur. We assume that the pipelining of 
kernel-stream requires three DBs and it iteratively runs 
on CGRA#2 at 30 times as Fig. 6(a) - the meanings of 
the symbols for kernel/CGRA are defined in Fig. 4. In 
this case, we can consider that CGRA#2 is broken with 2 
defective components as Fig. 6(b) and we can project the 
same fault-occurrence on RSF as Fig. 6(c). However, 
fault-recovery on the RSF is not structurally possible 
because of no connectivity between DB3 and PA1. 
However, we can alleviate such a structural limitation by 
shifting configuration of the kernel-stream on the RSF. 
Fig. 5 illustrates how to exploit intra/inter-CGRA co-
reconfiguration in order to achieve the shifting 
configuration. Before all, Fig. 5(a) shows initial 
configuration of the kernel-stream that PA1 utilizes DB1 
(D1) and DB4 (D2) for the running of 20 iterations. Then 
the RSF can be configured as Fig. 5(b) that shows the 
utilization of one more DB (DB3) for the remaining 10 
iterations. The utilization of DB3 (D3) can be achieved 
by shifting the configurations of the PAs from to ‘PA4 

→PA1→PA2’. Therefore, the RSF operates as if a PA is 
connected with three DBs. In this case, the intra-CGRA 
reconfiguration means that PA1 and PA2 are 
reconfigured twice in order to perform KA/KB and KB/KC. 
On the other hand, the inter-CGRA reconfiguration 
enables that three CGRAs are configured with different 

number of DBs and connected through the direct 
interconnections. Such a co-reconfiguration can start 
immediately because each CM is shared by two adjacent 
PAs that are dynamically reconfigurable. It means that 
the pipelining of the kernel-stream continually runs on 
the RSF without stall. 

IV. FAULT RECOVERABILITY EVALUATION 

We suggest a quantitative evaluation method of fault 
recoverability of a multi-CGRA based on two criterions. 
First criterion is fault severity that should reflect the 
seriousness degree of the fault-occurrence with 
considering recovery potential. The second criterion is 
the number of utilized components that are working after 
recovering faults - it means the recovery degree. It is 
much more accurate than the number of recovered 
CGRAs because heterogeneous multi-CGRA can show 
different number of utilized components despite of the 
same number of the recovered CGRAs. If we consider 
two such criterions together, we can see an inverse 
relationship between them. Therefore, we can plot the 
relationship on the graph according to 4 types of multi-
CGRA as Fig. 7 - CCF, RSF, RSF without co-
reconfiguration and BASE. In this figure, 2 graphs show 
the relationship for the previous examples (Example#1 
and Example#2). The fault recoverability of 4 types of 
multi-CGRA can be quantitatively represented as the rate 
of the area of the region in the horizontal/vertical-plane 
bounded by the graph – it is relative rate to CCF (100%) 
and shown in the right upper table on each graph. We 
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Fig. 6. Example#2: no interconnection among available DBs and PAs on RSF (a) A kernel-stream runs on CGRA#2, (b) CGRA#2 is 
broken with 2 faults, (c) The projection of the same fault-occurrence on RSF. 
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have implemented such a fault recoverability evaluator 
with C language. The evaluator automatically increases 
fault severity and estimates corresponding number of 
utilized components according to 4 types of multi-CGRA 
– we have run the implemented evaluator on a PC that is 
composed of an Intel Xeon X5690 operating at 3.46 GHz 
and 4GB-memory. In the graphs, the RSFs show 73% 
and 70.2% of the fault recoverability. In addition, we can 
see the effectiveness of the co-reconfiguration technique 
– it enhances 5.2% and 11.7% of the recoverability of the 
RSFs compared with the RSFs without it. Even though 
the recoverability is not enhanced considerably by the 
co-reconfiguration technique, it is well worth enough 
because only the reconfiguration scheme can extend the 
system lifetime without additional hardware resources. 

V. CONCLUSION 

There have been only a few researches based on fault-
tolerant CGRA without exploiting the strengths of 

CGRAs. 
Therefore, in this paper, we propose an efficient fault- 

recovery technique on ring-based sharing fabric (RSF) 
that enables exploiting the inherent redundancy and 
reconfigurability of the multi-CGRA. Compared with 
completely connected fabric (CCF), the proposed 
approach achieves up to 73% faulty recoverability. 
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Fig. 7. Fault recoverability comparison (a) Example#1 as Fig. 
3: BASE type – homogeneous 4 CGRAs, (b) Example#2 as Fig. 
6: BASE type – heterogeneous 2 CGRAs.  
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