Abstract
The exam scheduling problem has been classified as nondeterministic polynomial time-complete (NP-complete) problem because of the polynomial time algorithm to obtain the exact solution has been unknown yet. Gu${\acute{e}}$ret et al. tries to obtain the solution using linear programming with $O(m^4)$ time complexity for this problem. On the other hand, this paper suggests chromatic number algorithm with O(m) time complexity. The proposed algorithm converts the original data to incompatibility matrix for modules and graph firstly. Then, this algorithm packs the minimum degree vertex (module) and not adjacent vertex to this vertex into the bin $B_i$ with color $C_i$ in order to exam within minimum time period and meet the incompatibility constraints. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m) time complexity for exam scheduling problem, and gets the same solution with linear programming.
시험 일정 계획 수립 문제는 정확한 해를 다항시간으로 구하는 알고리즘이 알려져 있지 않은 NP-완전이다. 이 문제에 대해, Gu${\acute{e}}$ret et al.은 $O(m^4)$ 수행 복잡도의 선형계획법으로 해를 얻고자 하였다. 반면에, 본 논문에서는 O(m) 복잡도의 채색 수 알고리즘을 제안하였다. 제안된 방법은 원 데이터를 교과목에 대한 부적합성 행렬과 그래프로 변환시켰다. 다음으로, 부적합성 제약조건을 충족하면서 최소의 시간으로 시험을 치루기 위해, 최소 차수 정점(교과목)부터 인접하지 않은 정점들을 $C_i$ 색으로 배정하여 $B_i$ 상자에 채웠다. 실험 결과, 제안된 알고리즘은 시험 일정 계획 수립 문제에 대해 선형계획법의 $O(m^4)$를 O(m)으로 단축시키면서도 동일한 해를 얻었다.