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HYBRID ON-OFF CONTROLS FOR AN HIV MODEL BASED
ON A LINEAR CONTROL PROBLEM

TAE S00 JANG, JUNGEUN KiM, HEE-DAE KWON, AND JEEHYUN LEE

ABSTRACT. We consider a model of HIV infection with various compart-
ments, including target cells, infected cells, viral loads and immune effec-
tor cells, to describe HIV type 1 infection. We show that the proposed
model has one uninfected steady state and several infected steady states
and investigate their local stability by using a Jacobian matrix method.
We obtain equations for adjoint variables and characterize an optimal
control by applying Pontryagin’s Maximum Principle in a linear control
problem. In addition, we apply techniques and ideas from linear opti-
mal control theory in conjunction with a direct search approach to derive
on-off HIV therapy strategies. The results of numerical simulations indi-
cate that hybrid on-off therapy protocols can move the model system to
a “healthy” steady state in which the immune response is dominant in
controlling HIV after the discontinuation of the therapy.

1. Introduction

HIV is a type of lentivirus that infects core cells in the immune system, in-
cluding CD4+ T cells and macrophages, and then causes Acquired Immune De-
ficiency Syndrome (AIDS). Recent years have witnessed considerable advances
in the treatment of HIV patients. More than 20 FDA-approved anti-HIV drugs
are currently available. Two major types of anti-HIV drugs are reverse tran-
scriptase inhibitors (RTTs) and protease inhibitors (PIs). An efficient treatment
regimen typically used for suppressing the replication of HIV is HAART (highly
active antiretroviral therapy), which combines at least three anti-HIV drugs.
Although the use of HAART has led to sharp declines in HIV-related morbidity
and mortality, current treatment methods cannot clear HIV in patients, and
therefore HIV patients must continue HAART for life [19, 21, 26].

Lifelong HAART can give rise to side effects, toxicity, adherence, drug re-
sistance, and high costs [8, 13]. These risks and problems strongly motivate
the consideration of treatment strategies known as structured treatment inter-
ruptions (STIs) or on-off therapy strategies. These treatment strategies have
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received increasing attention in recent years, but their efficacy and safety have
been controversial. Many studies have considered specific STI strategies involv-
ing different interruption intervals and decision rules for stopping and initiating
therapy [17, 20, 23, 28]. Tang et al. [28] use a piecewise model of HIV dynamics
to explore STI strategies guided by CD4+4 T cell counts. Palacios et al. [20]
examine the viral, immune, and clinical impacts of a STI program in three
cycles of 12 weeks on and 4 weeks off on children infected with HIV.

There are some evidences that the HIV specific cytotoxic T lymphocyte re-
sponse (CD8+ immune effector cells) activity increases in patients experiencing
a viral rebound [20, 27]. Therefore, a number of studies have developed methods
that can boost immune effector cells through vaccine or treatment interruptions
once patients have suppressed the viral replication [30]. During interruptions,
the viral load typically increases, thereby stimulating or reactivating CD 8 im-
mune effector cells. The repeated discontinuation of antiretroviral therapy can
enable patients to maintain immune control of HIV with no treatment [16].

Many studies have explored the benefits of STTs, but they have considered a
wide range of interruption schedules and thus produced mixed results. There-
fore, there is no general consensus on optimal STI schedules. A good way to
derive optimal STT strategies is to use a mathematical model of HIV infection
in conjunction with control theory. A number of studies have explored optimal
control of HIV infection by using different models and objective functionals to
suggest continuous optimal treatment strategies [1, 2, 10, 14, 29]. In addition,
many studies have considered feedback control of HIV infection [3, 4, 6, 25].
Banks et al. [4] examine optimal feedback control of HIV infection by taking
a state-dependent Riccati equation (SDRE) approach and explore the problem
of designing a state estimator for use in nonlinear feedback control laws be-
cause only partial measurements of the state are available in many practical
problems.

Adams et al. [1, 2] investigate optimal control of viremia by considering a
number of drug-structured treatment interruptions and propose a direct search
approach using ideas from dynamic programming to obtain suboptimal on-off
treatment strategies, but because this approach is limited in that it can lead to
a large number of cost functional evaluations, they use five-day segments and
a subperiod method to reduce the number of iterations. In the present paper,
we investigate the problem of linear optimal control by using a mathematical
model of HIV infection consisting of a system of ordinary differential equations
(ODEs). We then apply the conjugate gradient algorithm to the linear control
problem in conjunction with the direct search approach to derive STI strate-
gies. The numerical simulations demonstrate that the derived on-off therapy
protocols can move the model system to a “healthy” steady state in which
the immune response is dominant in more efficiently controlling HIV after the
discontinuation of the therapy.

The rest of this paper is organized as follows: Section 2 describes and an-
alyzes this paper’s mathematical model. Section 3 formulates the problem of
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linear optimal control, derives the corresponding optimality system, and char-
acterizes the optimal control function. Section 4 introduces an hybrid algorithm
combining the conjugate gradient method and the direct search approach to
derive on-off therapy strategies. The numerical results demonstrate the effec-
tiveness of these STI schedules. Section 5 provides concluding remarks.

2. HIV model

This section introduces an HIV model involving an immune response de-
scribed through Michaelis-Menten-type saturation nonlinearity adapted from
Adams et al. [1, 2]. A system of ODEs describing compartmental infection
dynamics can be given by

Target: S=X—dS—(1—me)kVS
2.1) Infected: I=(1—e)kVS -6l —mEI
' Virus: V = (1 — age)Npdl — ¢V
Immune effectors: E = \ E+ Ilfléb E— I‘iEIéd E —90gFE

together with an initial condition
[5(0), 1(0), V(0), E(0)].

TABLE 1. Values of parameters of model (2.1).

parameter value units parameter value units
cells VIrions
A 10.0 T ey Nr 100 virions
d 0.01 = c 13 L
ay a
(651 0.7 — )\E 10—3 m;eiil.;ay
€ € [0,1] - be 03 L
k 80X 107 mmmo | K 01 s
1 1
1) 0.7 ms dg 0.25 Tag
m 1.0 x 1072 e K, 0.5 cells
a2 0.3 - op 0.1 .

This model includes four key compartments: uninfected target cells, CD4+
T cells (S, cells/mm3), infected target cells (I, cells/mm?), free viruses (V,
copies/mm?), and immune response, cytotoxic T lymphocytes (CTLs) (FE,
cells/mm3). Here we focus on those interactions relevant to drug treatment
and STI scenarios and discuss the model in the context of its representation of
two methods for controlling HIV infection: RTIs and PlIs.

The terms involving kSV represent the infection process in which infected
cells I result from encounters between uninfected target cells S and free virus
V. In the infectivity terms, drug efficacy a;£(¢) models an RT inhibitor that
blocks new infections by preventing the conversion of HIV RNA into DNA,
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which is a crucial part of the viral life cycle. Therefore, the virus infection rate
k is reduced by a factor of (1 — aye). On the other hand, PIs do not directly
inhibit the infectiousness of the virus. Instead, they alter some part of the viral
assembly process during the final stage of the viral life cycle and thus cause
the production of defective and noninfectious viruses. Drug efficacy aqe(t)
represents the fraction of noninfectious viruses produced from PI activity, and
therefore productivity Ny decreases to (1 —asge(t)) Ny. We consider the control
term 0 < g(¢t) < 1, and therefore £(¢t) = 0 and &(¢) = 1 represent no- and full-
treatment scenarios, respectively.

Finally, infected cells I may be cleared through the action of immune effector
cells (CTLs), denoted by E. Bonhoeffer et al. [5] suggest the dynamics of the
immune response. The joint presence of infected cells and existing immune
effector cells stimulates the proliferation of additional immune effector cells. In
addition, the third term in the equation for immune effector cells F represents
the immune impairment at high viral load. CTLs detect and lyse infected cells,
thereby killing them. Their action is represented by the term mEI. That is,
infected cells die at the rate mFE, which is dependent on the density of immune
effector cells. The inclusion of immune effector cells reflects the belief that they
play a crucial role in the context of STIs. The treatment strategies that can
boost these cells to the point of immune control are discussed later.

2.1. Analysis of the HIV model

The mathematical model (2.1) contains numerous parameters that must be
assigned before any numerical simulations. In specifying model parameters, we
maximize the use of values similar to those reported or justified in previous
researches. Table 1 summarizes the numerical values for these parameters,
which are extracted mainly from Bonhoeffer et al. [5] and Callaway and Perelson
[7].
We let o = (S,1,V, E)T denote the vector of model states and represent
model (2.1) as

dx(t)
dt

= f(t,l‘),

where f(t,x) is the right side of the ODE system. We use Maple to solve
f(t,z) = 0 for finding the steady state Zj with the parameter values in Table
1. Then we calculate the Jacobian matrix

Gfg;x) _ [afé(;;x)}

of the ODE system to consider the stability of the steady state. Because we are
interested in this stability for off-treatment steady state values, we set ¢ = 0.



HYBRID ON-OFF CONTROLS 473

The Jacobian matrix is

—d—kV 0 —kS 0
kV —d—mE kS —ml
0 NT(S —C 0 ’
0 A472E 0 A474I — (SE
where
bp K, degK, b d
Ay = ERy Eig and Ay = E E

CT I+ E)? I+ Kg)? I+K, T+K4

TABLE 2. Off-treatment (¢ = 0) steady states (cells/mm?)
for model (2.1) (non-physical steady states are omitted).

EQo EQ EQ» EQ3

S 1,000 | 162.571 | 580.770 | 968.863
I 0 11.958 1.675 0.075
v 0 64.389 9.023 0.402
E 0.01 0.031 | 180.178 | 347.356

local stability | unstable | stable | unstable | stable

Based on general ODE theory, it is guaranteed that if all eigenvalues of the
Jacobian matrix have negative real parts, then the equilibrium Zj is locally
asymptotically stable. Given the specified parameters under no treatment(e =
0), the model has several steady states, as shown in Table 2. Here we have a
locally unstable virus-free equilibrium EQq such that

S=1000, I=0, V=0, FE=0.01,

which represents an HIV-free individual, as well as two locally stable equilibria
for an HIV patient with no treatment. These stable steady states are as follows:

“unhealthy” (EQ;) : S = 162.571, I =11.958, V =64.389, E =0.031;
“healthy” (EQ3) : S = 968.863, I =10.075, V =0.402, FE = 347.356.

Here the “unhealthy” steady state corresponds to a dangerously high viral
set point, depleted T cells, and the minimal immune response, whereas the
“healthy” steady state represents immune control of viral infection and the
restoration of CD4+ T cells.

In general, the introduction of a low viral load causes the model system
converge to the “unhealthy” steady state F'(Q; under no treatment. Here we
derive on-off control functions (STI schemes) which move the model system
from the virus-dominant equilibrium EQ; to the immune-dominant equilibrium
EQ3 (see Figure 1).
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FIGURE 1. EQq: uninfected locally unstable virus-free equi-
librium; EQ1: “unhealthy” locally asymptotically stable equi-
librium with the attraction region A; FQs3: “healthy” locally
asymptotically stable equilibrium with the attraction region
B; dashed line (——): uncontrolled trajectory; and solid line
(—): controlled trajectory.

3. Linear optimal control problem

Previous studies have employed optimal control techniques to investigate
dynamic drug therapies for HIV patients. Such studies have used various types
of mathematical models and/or objective functionals for HIV dynamics. Here
we consider practical therapeutic options in a clinical setting that can minimize
the total viral load and boost the immune response while allowing for STIs. To
design an on-off HIV therapeutic strategy, we first formulate a linear optimal
control problem. In addition to the mathematical model described in equa-
tion (2.1) for HIV dynamics, we consider a control problem with the objective
functional given by

(3.1) J(e) = /0 Y (P=(t) + QV(t) — RE()]dr,

where £(t) is the control variable representing time-dependent treatment. The
parameters P, @, and R are weight constants for the control input, virus, and
immune effector, respectively.

The first term in (3.1) represents the systemic cost of the drug treatment.
The objective functional (3.1) expresses this paper’s goal to minimize both
the HIV population and the systemic cost to the body while maximizing the
immune response. Therefore, we seek the optimal control * such that

(3.2) J(e*) =min{J(e) |e € U}

subject to the system of ODEs (2.1), where 4 = {e | ¢ is piecewise continuous,
e(t) e U =10,1], and t € [0,¢f]} is the control set.



HYBRID ON-OFF CONTROLS 475

3.1. Existence of optimal controls

The existence of a solution to the optimal control problem can be obtained
by verifying sufficient conditions. We refer to the conditions in Theorem III.4.1
and its corresponding Corollary in [11].

Theorem 3.1. There exists an optimal control €* to the linear optimal control
problem (3.2).

Proof. Let f(t,x,¢) be the right-hand side of (2.1). The boundedness of so-
lutions to the system (2.1) for a finite time interval is needed to establish the
conditions. Note that the quantities S, I, V, and E decrease only in propor-
tion to their present sizes, and therefore all variables remain nonnegative if
their initial values are nonnegative. To establish upper bounds on solutions,
we consider the supersolutions S, I, V, and E satisfying
% =\, % = CkV, (il_‘t/ = Npél, and é—f =Ag +bpL.

Then S and E are uniformly bounded in the finite time interval, and so are I
and V since they satisfy the linear system with bounded coefficients. Therefore,
there exists a constant C' such that

(33) |f(t7050)| S C? |fI(taz5€)| S C(l + |€|)7 and |f5(t,$,€)| S C

By (3.3), we know that f is continuous. In addition, there exist positive
constants Cq and Cy such that | f(¢, z,u)| < C1(1+ |z| + |u|) and |f(¢, z1,u) —
ft, 2, u)] < Calxy — x2|(1 + |u]). Therefore there exists a unique solution to
(2.1) for a constant control, which implies that the admissible set of all solutions
to system (2.1) with the corresponding control in I is non-empty [18, Theorem
9.2.1].

The function f(¢,x,€) can be expressed in the generic form

(3.4) ft,z,e) = F(x(t)) + G(z(t))e(t),
where
A—dS —kVS
KV S
kVS — 61 — mEI a1
(3.5) Flz) = Vo and G(2) = | —aikVs
A —asN7p610

bplE _ dglE
Ap + T+K, TI+Kq opE

Therefore, f is linear in the control € with the coefficients dependent on time
t and the state variable x.

The set U = [0, 1] is compact and convex, and by definition, the integrand
of the cost functional is convex in U. Having verified the conditions, we apply
Theorem II1.4.1 and Corollary II1.4.2 in [11] to conclude that there exists an
optimal control function. O
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3.2. Optimality system

We now characterize an optimal control function by using Pontryagin’s Max-
imum Principle [22]. We convert the constrained minimization problem (3.2)
into an unconstrained one to obtain an optimality system, which is a necessary
condition for an optimal solution.

Using the notation (3.4), we can write the HIV model (2.1) as

&= F(z)+ G(x)e,
where F(z) and G(x) are described in (3.5). Let F; and G; (i = 1,2,3,4)
denote components of F' and G, respectively:
F = (Fl, FQ, Fg, F4)T and G = (Gl, GQ, Gg, G4)T.

Note that

. OF . 0G
(3.6) F = ot and G = Frd

Theorem 3.2. Given the optimal control €* and solutions to the corresponding
state system (2.1), there exist adjoint variables & = (&1,&2,&3,€4)7 satisfying

(3.7) §=—([A@)]" + [B@) )¢ - C and &(ty) =0,
where
Az) = 68_5’ B(z) = g—i, and C =(0,0,Q,—R)".

Further, if we define the switching function v by

Y(t) = P+ G(x(1)),

then €* can be expressed as

0 if >0,
(3.8) ()= —5=8 if v=0
1 if ¢ <0,

where

Pz, €) = €7 {(A2 +CTA— A)G + (BA—2AB + El)F} +CT(AG — 2BF),
Q(z,€) = €7 [(zBA — Ay — AB)G + (Bs — B?)F} —CTBG,

where /~11, gg, El, and EQ are defined in the proof.

Proof. The Hamiltonian equation is given by

H=Pe+QV —RE+ ¢T3 = Pe+QV — RE + ¢7(F(x) + G(z)e).
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Taking the first variations with respect to S, I, V, and E yields the adjoint, or
costate, equations

. 0H 7 0%
NS T s
R L G
2T ar az’
. OH 10
b=—3r =520,
: OH 7 O 8:E
§a = 3B *5 - I
with the terminal condition §(tf) = 0.
By the simple calculations of 2 55 g}b, g‘i/, and gE, we can write the system
of adjoint equations as
: T T
(3.9) é=—([A@)]" + [B@)] ") - C,
where
—d—kV 0 —kS 0
Alz) = or _ KV —6—mE kS —mlI
T 9r 0 Ntd —C 0 ’
0 AsoFE 0 Al — 6
bEKb dEKd bE dE
Ago = — d Ass= —
RTUTRK)? T+ K.z ™M "M™MTT0R, T+Ky
and
alkV 0 OéllCS 0
B(.T) _ a_G _ 70&1]6‘/ 0 *Oélks 0
- Or 0 —asNrd 0 0
0 0 0 0
OH

The equation %7 = 0 contains no information on the control. Therefore, to
characterize the optimal control, we define the switching function

Y= 0_1;1 =P+ ¢TG(w).

Then the optimal control is given by

0 if ¢ >0,
e® = ¢ singular if ¢ =0,
1 if ¥ <0.

If v» = 0 cannot be sustained over an interval but occurs only at finitely many
points, then we have a bang-bang control. In this case, €* is a piecewise con-
stant function switching between only upper and lower bounds. If ¢ = 0 over
an interval, then £* is singular for that interval. Here we must find the charac-
terization of €* for this interval, called singular arc, by using other information.
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To address the issue of the singular arcs, we assume that the switching
function ¢ is zero over the interval (¢1,t3). Setting the first derivative of the
switching function to zero, we obtain

0=v¢=E'G+¢€7G
(3.10) = —(AT¢ + BT¢e + C)TG + ¢ (BF + BGe)
= ¢TAG - 0TG + T BF,

Since equation (3.10) has no information on the control €, we further investigate
the second derivative of the switching function. By (3.6) and (3.9), we have

0=0=—ETAG —¢TAG — TAG — CTG +T"BF + ¢"BF + ¢"BF
= (AT¢ + BTee + C)TAG — ¢TAG — €T A(BF + BGe)
— CT(BF + BGe) — (AT¢ + BT¢e + C)'BF
+ TBF + €T B(AF + AGe).
We then compute and express the derivatives of A and B as follows:

A= Ay (z) + Ay(2)e,

(3.11)

where
7]€F3 0 7kF1 0
-~ kFg 77’)’LF4 kFl 7mF2
Az =1 " 0 0 0o |
0  AysFy+AgEF, 0 AguF,
—kG3 0 —kG4 0
~ ng —mG4 k/’Gl —mGz
Ax() = g 0 0 0 ’
0 AEGy 0 Au.Gy
and
i - dp Ky B be Ky
OT NN T+ K)? (T+Ky)?
Similarly,
B = Bl (ZL') + BQ(SC)E,
where
OélkFg 0 alkrFl 0
~ —a1kF3 0 —aqkF; O
Bua) =907 0 N o)
0 0 0 0
and
Oélk/’G3 0 alszl 0
~ —a1kGs 0 —a1kG1 0
Baw) = | 777" g 0
0 0 0 0
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By substituting A and B into (3.11), we characterize the optimal control:

_ P9
Q(z,€)’

where
P(z,€) = €T [(A2 +CTA— A)G + (BA—2AB + El)F] + CT(AG — 2BF)

and
Qz,&) =¢" {(2BA — Ay — AB)G + (By — BQ)F} - CTBG. 0

We note that the singular control is admissible only if the value lies in the
interval [0, 1] and the generalized Legendre-Clebsch condition is satisfied, that
is

o |d* (%

3

Oe dt?

4. Hybrid on-off controls

We now determine an optimal solution to problem (3.2) by solving the opti-
mality system. We have bang-bang controls for some intervals with a nonzero
switching function and obtain continuous singular controls for some intervals
in which the switching function is zero. However, a continuous therapy is not
practical because in a clinical setting, treatment can only be altered at certain
intervals. In this section, we derive on-off HIV therapy strategies for the whole
interval that can provide clinical benefits similar to those of continuous treat-
ment while allowing for STIs. For this, we approximate the continuous singular
control through on-off control functions by taking the direct search approach.

In the direct search approach, we assume that the time-discretized control
€ is a vector consisting of only 0 or 1. If a component of the control vector is
0, then there is no drug treatment that day, whereas if it is 1, then there is
full drug treatment. The size of the control vector is as large as the number
of treatment days. For example, if we consider a drug treatment strategy over
n days, then the size of the control vector is 1 x n. A set of all such control
vectors is denoted by A. The objective is to identify the optimal control &*
satisfying

J(e*) = gél}\l J(e)

subject to the state system (2.1), where J(¢) is defined by (3.1).

Since the number of elements of set A is finite, the existence of an optimal
control vector is guaranteed. In this search method, we can begin by selecting
any vector € from set A and then solving the state system with a control function
representing the interpolation of the vector e. We then select another ¢ from
set A and again solve the state system in the same way. By comparing the
values of the objective functional J, we select the control vector corresponding
to the lower value of the cost functional. By iterating this strategy over all
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possible € from set A, we obtain the optimal control vector €*. However, this
strategy to obtain the optimal control vector can lead to a large number of cost
functional evaluations and thus a large number of solutions to the state system

(2.1).

singular arc

t;
tit1

tit1

FIGURE 2. The linear optimal control (upper graph) and the
hybrid on-off control (lower graph).

In the example, the number of cost functional evaluations is 2°°° because
the duration of treatment periods is assumed to be 990 days, which makes
this approach computationally infeasible. Previous studies have suggested two
approaches to reduce the number of iterations [2, 1]. One approach is to use
segments of several days instead of one-day segments. This is not only useful
for reducing the computational burden but also more practical because it is
not clinically feasible for drug schedules to allow for daily changes. Based on
three-day segments, the size of each control vector decreases to 1 x 330 from
1 x 990. Therefore, the number of iterations decreases to 2330, which is still
quite large.
The second way to address this problem is to consider subperiods such as
[0, 30], [0, 60], [0,90], .. .,[0,990]. In this method, we preferentially find an opti-
mal STI control €} over the first subperiod [0, 30] by using the aforementioned
technique for reducing iterations (i.e., three-day segments). Since the size of
e} is 1 x 10 for three-day segments over 30 days, the number of iterations to
obtain optimal solutions is 2'° = 1024. In the second step, we consider the

following control vector for the subperiod [0, 60]:
Ea = [E], %, %, k, %, Kk, %, Kk, %, *, X|
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where % is 0 or 1. That is, we fix the optimal STI €7 as the first 10 elements
of the control €5 and iterate €9 to find the last 10 elements of the control that
produces an optimal STI control €5 for the subperiod [0,60]. In this case, the
number of iterations is also just 2'° = 1024, and therefore we can obtain it
quickly. We repeat this process to find an optimal STT control €% for [0, 90], €}
for [0,120], and so on. The STT control obtained for the whole period [0, 990]
is €* = e35. We refer to this STI control driven by the aforementioned direct
search approach as the “simple STI”. Here it should be emphasized that the
simple STT control £* is suboptimal.

We now consider a hybrid on-off control that combines the linear optimal
control and the direct search method. We first use an iteration method of the
conjugate gradient type to solve the linear optimal control problem in each
subperiod. The conjugate gradient algorithm is a powerful scheme for solving
large-scale minimization problems [9, 12, 15, 24]. Using an initial guess for the
control variable, we solve the state system (2.1) with initial conditions forward
in time and then solve the adjoint system (3.7) with terminal conditions back-
ward in time. We update the control in each iteration by using the conjugate
gradient algorithm. Using the algorithm, we obtain a control that is continuous
on the singular arc and bang-bang otherwise in each subperiod (see the upper
graph in Figure 2). To derive an on-off control for the subperiod, we apply the
direct search method to the singular part.

We first simulate early infection by introducing very low levels of the virus
particle and the infected CD4+ T cell density as follows:

S(0)=10%, I(0)=10"", V(0)=10"% and E(0)=10"2

We choose the weight constants P = 1, Q@ = 1072, and R = 5 x 10 to
balance the differences in the magnitude of the cost of the drug treatment,
the viral load, and immune effectors in the objective functional (3.1). Figure
3 shows the results for the hybrid on-off method. Figure 4 shows the simple
STI and associated solutions for comparison purposes. We note that drugs
are interrupted during treatment. Such interruptions can cause extremely high
viral load and thus lead to an increase in infected cells, stimulating an immune
response. Even when the drug is discontinued, because of a strong immune
response in both strategies, the viral load remains low and the population of
uninfected CD4+ T cells recovers from the effect of HIV. That is, the derived
on-off control can move the model system to a “healthy” steady state in early
infection. We observe that the drug is discontinued earlier in the hybrid on-off
control than in the simple STT control.

We now provide an example of the movement between the model’s two stable
equilibria (FQ: and EQ3) as discussed in previous sections. Here we identify
the control functions that move the state from an “unhealthy” equilibrium to a
“healthy” one. We use the “unhealthy” stable equilibrium (EQ;) as the initial
condition for model (2.1) for the time interval [0,990] (that is, S(0) = 164.197,
I(0) = 11.936, V(0) = 63.628, and E(0) = 0.024) to demonstrate that this
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equilibrium can be moved to a “healthy stable equilibrium through the hybrid
on-off control. Figure 5 shows the hybrid on-off control and its associated solu-
tions, and Figure 6 shows the simple STI control and its associated solutions.
The virus and immune effector populations shift from an “unhealthy” equilib-
rium showing high viral load and low immune effector counts to a “healthy”
equilibrium showing low viral load and high immune effector counts. Both the
hybrid on-off control and the simple STI control suggest that the optimal use of
STIs can boost the immune response and enhance subsequent control of viral
load without requiring drugs. However, the use of the hybrid on-off control
allows for the derivation of a more efficient scheme for leveraging the immune
response to achieve similar outcomes. In particular, the drug is discontinued
much earlier in the hybrid on-off control than in the simple STI control. In
addition, the viral load remains low, and the population of uninfected CD4+
T cells recovers from HIV. Therefore, the hybrid on-off control proposes op-
timal therapeutic options that can move patients from an “unhealthy” stable
equilibrium to a “healthy” one within a shorter treatment period.

5. Conclusions
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FIGURE 3. The hybrid on-off control and its solutions (solid
line) with P =1, Q = 1072, and R = 5 x 10?%; solutions with
full-treatment (dashed line); and solutions with no-treatment
(dashed and dotted line) for early infection
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FIGURE 4. The simple STI control and its solutions (solid
line) with P =1, Q = 1072, and R = 5 x 10%; solutions with
full-treatment (dashed line); and solutions with no-treatment
(dashed and dotted line) for early infection

In this paper we have considered how to design and synthesize efficient and
practical therapy strategies for HIV. The mathematical model for HIV progres-
sion consists of compartments for target cells, infected cells, virus, and immune
response, which exhibits multiple locally stable steady states. For the model
considered we apply techniques and ideas from optimal control theory. The
optimal control problem is formulated to achieve the goal of suppressing virus
and boosting immune effector while being mindful of drug usage subject to a
drug treatment as a control. The linear control problem yields continuous con-
trol that has the potential to suggest an optimal therapeutic option being able
to minimize the viral load and to maximize the immune response. However,
the resulting treatment regime is not practical in a clinical setting due to the
continuous singular controls for some intervals in which the switching function
is zero.

In this context, we propose a hybrid on-off control combining the linear
optimal control and the direct search method, in particular, the simple struc-
tured treatment interruption (STI) introduced in [1, 2]. As a result, we ob-
tain a practical on-off therapy protocol that can move the model system to a
healthy steady state in which the immune response is dominant in controlling
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line) with P =1, Q = 1072, and R = 5 x 10%; solutions with
full-treatment (dashed line); and solutions with no-treatment
(dashed and dotted line) in the unhealthy steady state

HIV. Moreover, numerical simulations show that hybrid on-off control attains
smaller values of the objective functional than simple STI and allows for shorter
treatment period. In summary, we conclude that hybrid on-off control function
provides a more efficient strategy compared to simple STI, maintaining clinical
benefits of simple STI control to lead to long-term control of HIV after the
discontinuation of the therapy.

The proposed hybrid on-off control has a great potential to provide guide-
lines for HIV treatment strategies, but further research is necessary to be im-
plemented in a clinical setting. While we demonstrated that viral load at low
levels for long periods is maintained through hybrid on-off control, the actual
results may vary from patient to patient. One important reason is that the
model parameters are assumed to be fixed, but everybody has different values,
in fact. In order to address this issue, more work is needed to verify the robust-
ness of our algorithm. Another direction to advance is incorporating feedback
control approach to reflect the patient’s status not only at the initial stage but
also at the follow-up visits.
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