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DUO RING PROPERTY RESTRICTED TO GROUPS

OF UNITS

Juncheol Han, Yang Lee, and Sangwon Park

Abstract. We study the structure of right duo ring property when it is
restricted within the group of units, and introduce the concept of right

unit-duo. This newly introduced property is first observed to be not
left-right symmetric, and we examine several conditions to ensure the
symmetry. Right unit-duo rings are next proved to be Abelian, by help of
which the class of noncommutative right unit-duo rings of minimal order
is completely determined up to isomorphism. We also investigate some
properties of right unit-duo rings which are concerned with annihilating

conditions.

Throughout this paper all rings are associative with identity unless otherwise
stated. Let R be a ring. X(R) denotes the set of all nonzero nonunits in R, and
G(R) denotes the group of all units in R. For a ∈ R, set [a]ℓ = {ua |u ∈ G(R)}
and [a]r = {au |u ∈ G(R)}, i.e., [a]ℓ = G(R)a and [a]r = aG(R). Let J(R),
I(R), and N(R) denote the Jacobson radical, the set of all idempotents, and
the set of all nilpotent elements in R, respectively. |S| denotes the cardinality
of a subset S of R. Write R∗ = R\{0}. Z (Zn) denotes the ring of integers
(modulo n). Q denotes the field of rational numbers. GF (pn) denotes the
Galois field of order pn.

Denote the n by n full (resp., upper triangular) matrix ring over R by
Matn(R) (resp., Un(R)) and use eij for the matrix with (i, j)-entry 1 and
elsewhere 0. Following the literature, we write Dn(R) = {(aij) ∈ Un(R) | all
diagonal entries are equal } and Vn(R) = {(aij) ∈ Dn(R) | a1k = a2(k+1) =

· · · = ahn for h = 1, 2, . . . , n − 1 and k = 2, . . . , n}. Note Vn(R) ∼=
R[x]

xnR[x] , so

Vn(R) is commutative if so is R.
Due to Feller [7], a ring is called right (resp. left) duo if every right (resp.

left) ideal is an ideal; a ring is called duo if it is both right and left duo. It is
easily shown that idempotents of right duo rings are central. There are very
useful results for duo rings in [3, 16, 24].
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We next consider right duo property on the group of units in rings. A ring
R will be called right unit-duo if [a]ℓ ⊆ [a]r for every a ∈ R. Left unit-duo
rings are defined similarly. A ring will be called unit-duo if it is both left and
right unit-duo. Note that a ring R is unit-duo if and only if [a]ℓ = [a]r for
each a ∈ R. It is easily checked that both commutative rings and finite direct
products of division rings are unit-duo. It is also obvious that a ring R is
unit-duo when G(R) is contained in the center of R. Note that a ring R, with
X(R) nonempty, is right unit-duo if and only if [a]ℓ ⊆ [a]r for every a ∈ X(R).
Indeed, [u]ℓ = [u]r = G(R) for every u ∈ G(R), and [0]ℓ = [0]r = {0}. When
R is a unit-duo ring, we use [a] to denote [a]ℓ = [a]r for every a ∈ R. In
the following section we see that this newly introduced ring property is not
left-right symmetric.

1. Basic structure of right unit-duo rings

In this section, we observe basic properties and examples of right unit-duo
rings. We also see the relationships among right duo, right unit-duo, and
Abelian rings. In the procedure we examine the unit-duo property of some
kind of group ring.

We first observe that the unit-duo property is not left-right symmetric. To
do it, we apply the construction of ring in [22, Definition 1.3] and argument in
[15, pages 6, 7]. Let R be a commutative ring with an endomorphism σ and
M be an R-module. For R⊕M , the addition and multiplication are given by

(r1,m1) + (r2,m2) = (r1 + r2,m1 +m2) and

(r1,m1)(r2,m2) = (r1r2, σ(r1)m2 +m1r2).

Then this construction forms a ring and usually called the skew-trivial extension
of R by M , denoted by R ∝ M .

Theorem 1.1. (1) Let K be a field with a monomorphism σ and M be a K-

module. If σ is not surjective, then K ∝ M is a right unit-duo ring which is

not left unit-duo.

(2) Let K be a field with a monomorphism σ and M be a K-module. If σ is

bijective, then K ∝ M is a unit-duo ring.

Proof. (1) Let R = K ∝ M and assume that σ is not surjective. Since J(R) =
0 ⊕M and R/J(R) ∼= K, G(R) = {(r,m) ∈ R | r 6= 0}. By assumption, there
exists some s ∈ K such that s /∈ σ(K). Then (s, n) ∈ G(R) for any n ∈ M .
Consider 0 6= (0,m) ∈ R. Then

(0,m)(s, n) = (0,ms) = (0, sm) 6= (0, σ(t)m) = (t, n)(0,m)

for any (t, n) ∈ R since s /∈ σ(K). This means (0,m)(s, n) /∈ G(R)(0,m), and
hence R is not a left unit-duo ring.

To show that R is right unit-duo, let (s,m) ∈ G(R), (0, n) ∈ X(R). Then

(s,m)(0, n) = (0, σ(s)n) = (0, nσ(s)) = (0, n)(σ(s), 0).
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Here (σ(s), 0) ∈ G(R) since s 6= 0, and so R is right unit-duo.
(2) The proof is similar to (1). �

In the following we see an illustration of Theorem 1.1.

Example 1.2. (1) Let K be a field and K(x) be the quotient field of K[x].

Recall the non-surjective monomorphism of K(x) defined by σ( f(x)
g(x) ) =

f(x2)
g(x2) .

Set R = K ∝ K(x). Then R is right but not left unit-duo. Note that R is
isomorphic to the subring

R =

{(

h(x) 0
k(x) σ((h(x))

)

|h(x), k(x) ∈ K(x)

}

of Mat2(K(x)).
(2) For R ⊕ M , the addition and multiplication are given by (r1,m1) +

(r2,m2) = (r1 + r2,m1 +m2) and suppose that

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1σ(r2)).

Then this construction also forms a ring. Let Rr = K ⊕K(x) with this mul-
tiplication, where K and K(x) are such as in (1). We can show that Rr is
not right but left unit-duo via a similar computation to (1). Note that Rr is
isomorphic to the subring

R =

{(

h(x) k(x)
0 σ((h(x))

)

|h(x), k(x) ∈ K(x)

}

of Mat2(K(x)).

A ring is usually called Abelian if each idempotent is central. A ring is
usually called reduced if it has no nonzero nilpotent elements. Reduced rings
are easily shown to be Abelian. Recall that an involution on a ring R is a
function ∗ : R → R which satisfies the properties that (x + y)∗ = x∗ + y∗,
(xy)∗ = y∗x∗, 1∗ = 1, and (x∗)∗ = x for all x, y ∈ R.

Theorem 1.3. (1) Right (left) unit-duo rings are Abelian.

(2) Every right Artinian, right (left) unit-duo simple ring is a division ring.

(3) Let R be a domain. If R is right duo, then R is right unit-duo.

(4) Let R be a ring with an involution ∗. Then R is left unit-duo if and only

if it is right unit-duo.

Proof. (1) Let R be a right unit-duo ring and e2 = e ∈ R. We first claim that
if f2 = f ∈ [e]r, then e = f . For, f = ea for some a ∈ G(R), entailing f = ef .
From f = ea, we get ea(1− f) = f(1− f) = 0. Since R is right unit-duo, there
exists a′ ∈ G(R) such that 0 = ea(1−f) = e(1−f)a′. This yields e(1−f) = 0,
so e = ef . Consequently, e = f .

Next consider an idempotent ueu−1 ∈ R for u ∈ G(R). Since R is right
unit-duo, ueu−1 = eu′u−1 ∈ [e]r for some u′ ∈ G(R). Then we get ueu−1 = e
by the preceding claim, entailing ue = eu.
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We accordingly have that be = eb for any b ∈ N(R) (hence 1 − b ∈ G(R)),
via the computation (1 − b)e = e(1− b).

Now let r ∈ R be arbitrary. Consider x = er(1 − e), y = (1− e)re ∈ N(R).
Then x2 = y2 = 0, and this yields x = ex = xe = 0 and y = ye = ey = 0 by
help of the preceding result. Consequently we have er = ere = re, and so R is
Abelian. The proof of the left case is similar. (2) is an immediate consequence
of (1).

(3) Let R be right duo and 0 6= a ∈ R, u ∈ G(R). Then v ∈ R such that
ua = av. Observe as well that a = u−1av = av′v for some v′ ∈ R also since
R is right duo. This implies a(1 − vv′) = 0, and since R is a domain we have
vv′ = 1, entailing v ∈ G(R).

(4) Let R be left unit-duo. For a ∈ R and u ∈ G(R). Observe first (ua)∗ =
a∗u∗, noting u∗ ∈ G(R). Since R is left unit-duo, a∗u∗ = va∗ for some v ∈
G(R). This yields

ua = ((ua)∗)∗ = (a∗u∗)∗ = (va∗)∗ = av∗,

noting v∗ ∈ G(R). This leads us to conclude that R is right unit-duo. The
proof of the converse is analogous. �

Note. There exists another proof of Theorem 1.3(1) which is done by using a
direct computation as follows. Since (1 − e)re (e2 = e, r ∈ R) is nilpotent, we
have g = 1+(1−e)re ∈ G(R) and eg = e. Since R is right unit-duo, there exists
h ∈ G(R) such that e = geh (consider g−1e ∈ [e]ℓ). Hence eh = eeh = egeh =
ee = e, so from e = geh we obtain e = ge. Notice ge = e + (1 − e)re. This
forces (1 − e)re = ge − e = 0, which shows re = ere. Similarly we can obtain
er = ere from the nilpotent element er(1 − e), proving that every idempotent
is central.

Let K be a commutative ring and G be any group. Consider the standard
involution ∗ on the group ring KG in [2], i.e., (

∑

aigi)
∗ =

∑

aig
−1
i for all

ai ∈ K and gi ∈ G. Then KG is left unit-duo if and only if it is right unit-duo
by Theorem 1.3(4). Let Q8 be the quaternion group of order 8, and consider
the group ring ZQ8. Take i+ 2j ∈ ZQ8 and we claim that (i+ 2j)i cannot be
contained in R(i+ 2j), noting i ∈ G(ZQ8). We see that every element of ZQ8

is of the form α =
∑3

s=0 asi
s + (

∑7
t=4 ati

7−t)j, by using Q8 = 〈i, j〉. Letting
(i + 2j)i = α(i + 2j), we get a6 = − 6

15 /∈ Z by help of the computation in
the proof of [2, Example 1.2]. Thus ZQ8 is neither left nor right unit-duo by
Theorem 1.3(4). But we will see that QQ8 is unit-duo by Proposition 1.8 to
follow.

The converse of Theorem 1.3(1) need not hold by the rings R4 and R5 of
Example 2.2 to follow. The converse of Theorem 1.3(3) also need not hold by
the ring of Example 1.7 to follow. In the following we find some conditions
under which the converses holds.

Following [8], a ring R is called von Neumann regular (simply, regular) (resp.,
unit-regular) if for every x ∈ R there exists y ∈ R (resp. u ∈ G(R)) such that
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xyx = x (resp. xux = x). Abelian regulars are unit-regular by [8, Corollary
4.2]. Let R be a unit-regular ring and a ∈ R. Then a = aua for some u ∈
G(R). So if R is Abelian, then a = auu−1ua = (auua)u−1 = u−1(auua) with
auua ∈ I(R). We use this fact freely. Due to Bell [1], a ring R is called to
satisfy the insertion-of-factors-property (simply, an IFP ring) if ab = 0 implies
aRb = 0 for a, b ∈ R. Narbonne [19], Shin [23], and Xu-Xue [25] used the
terms semicommutative, SI, and zero-insertive for the IFP, respectively. A ring
is usually called reduced if it has no nonzero nilpotent elements. The class of
IFP rings clearly contains commutative rings are reduced rings. It is shown
that D3(R) is IFP if and only if R is a reduced ring, by [12, Proposition 1.2]
and [11, Proposition 2.8]. A simple computation yields that IFP rings are
Abelian. It is easily checked that left or right duo rings are IFP.

Corollary 1.4. Let R be a regular ring. Then the following conditions are

equivalent:
(1) R is right (left) unit-duo;
(2) R is Abelian;
(3) R is right (left) duo;
(4) R is IFP.

Proof. Left or right unit-duo rings are Abelian by Theorem 1.3. For the proof
of (2)⇒(1), let R be an Abelian regular ring and x ∈ X(R). Then by [8,
Corollary 4.2], R is unit-regular, and so x = ue = eu for some u ∈ G(R) and
e ∈ I(R). We observe [x]ℓ = [e]ℓ = [e]r = [x]r as well. Thus R is unit-duo.
(2)⇒(3) is proved by [8, Theorem 3.2]. (4)⇒(2) and (3)⇒(4) are obvious. �

By Corollary 1.4 and [8, Theorem 3.2], we also have that a regular ring is
right unit-duo if and only if it is reduced.

Following Nicholson [21], a ring is called clean if every element is a clean
element (i.e., a sum of a unit and an idempotent). The class of clean rings
includes semiperfect rings and unit-regular rings [4, 5].

Proposition 1.5. Let R be a clean ring such that G(R) is an Abelian group.

Then the following conditions are equivalent:
(1) R is right (left) unit-duo;
(2) R is a commutative ring;
(3) R is right (left) duo;
(4) R is Abelian.

Proof. (4)⇒(2). Let R be an Abelian ring and x, y ∈ R. Since R is clean,
x = ux + ex, y = uy + ey for some ux, uy ∈ G(R) and ex, ey ∈ I(R). Since R is
Abelian, exey = eyex, uxey = eyux, and uyex = exuy. In view of G(R) being
Abelian, uxuy = uyux and xy = yx. Implications remained are obtained by
Theorem 1.3 or obvious. �
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The condition “G(R) is an Abelian group” is not superfluous by the existence
of noncommutative division rings. The condition “clean” is also not superfluous
as we see in the ring in Example 1.7 to follow.

Proposition 1.6. Right (resp. left) unit-duo local rings are right (resp. left)
duo.

Proof. Let R be a right unit-duo local ring and I be a right ideal of R. Take
r ∈ R and a ∈ I. If r ∈ G(R), then ra = au for some u ∈ G(R) since R is right
unit-duo, entailing ra ∈ I.

Let r ∈ X(R). Then since R is local, 1−r is a unit of R. Thus (1−r)a = av
for some v ∈ G(R) since R is �

The condition “local ring” in Proposition 1.6 is not superfluous as follows.

Example 1.7. We refer to [17, Theorem 1.3.5, Corollary 2.1.14, and Theorem
2.1.15]. Let Q〈x, y〉 be the free algebra with noncommuting indetermiantes

x, y over Q. The first Weyl algebra A1(Q) ∼=
Q〈x,y〉

(yx−xy−1) , R say, is a domain

whose invertible elements are nonzero rational numbers (hence central), where
(yx − xy − 1) is the ideal of Q〈x, y〉 generated by yx − xy − 1. We identify
x and y with their images in R for simplicity. A1(Q) is neither left nor right
duo. In fact, Rx (resp., xR) is not right (resp., not left) ideal since xy /∈ Rx
(resp., yx /∈ xR). Thus R is neither left nor right duo. But R is unit-duo since
[f ]ℓ = [f ]r = Q∗f for any f ∈ R, noting G(R) = Q∗.

It is well-known that the group ring R = KG is left duo if and only if it
is right duo, where K is a commutative ring and G be any group. In fact,
ab = ((ab)∗)∗ = (b∗a∗)∗ = (cb∗)∗ = bc∗ ∈ bR for some c ∈ R (if R is left duo),
and ab = ((ab)∗)∗ = (b∗a∗)∗ = (a∗d)∗ = d∗a ∈ Ra for some d ∈ R (if R is
right duo), where a, b ∈ R, and ∗ is the standard involution on R defined by
(
∑

aigi)
∗ =

∑

aig
−1
i for all ai ∈ K, gi ∈ G. We also note that KG is left

unit-duo if and only if it is right unit-duo by Theorem 1.3(4).

Proposition 1.8. Let K be a field of characteristic zero and R be the group

ring KQ8, where Q8 is the quaternion group. Then the following conditions

are equivalent:
(1) R is right (left) duo;
(2) R is right (left) unit-duo;
(3) R is Abelian;
(4) R is IFP.

Proof. By [18, Theorem 7.4.6 and Lemma 7.4.9], R is isomorphic to K ⊕K ⊕
K⊕K⊕H(K) such that H(K) is either a division ringD or Mat2(K). (2)⇒(3)
follows from Theorem 1.3(1). If R is Abelian, then H(K) must be a division
ring. This entails R ∼= K ⊕K ⊕K ⊕K ⊕D, so R is both duo and unit-duo.
(1)⇒(4) and (4)⇒(3) are clear. �



DUO RING PROPERTY RESTRICTED TO GROUPS OF UNITS 495

Note that the ring R in Proposition 1.8 is not a domain but a reduced ring
as can be seen by (2 · 1 + 2 · −1)(1 · 1 + (−1) · −1) = 0.

2. Noncommutative right unit-duo rings of minimal order

In this section we find basic examples of right unit-duo rings, seeing that the
class of noncommutative right unit-duo rings of minimal order is completely
determined up to isomorphism.

Due to Lambek [14], a ring R is called symmetric if rst = 0 implies rts = 0
for all r, s, t ∈ R. Symmetric rings are clearly IFP, but the converse need
not hold by [12, Example 1.10]. The class of symmetric rings contains both
commutative rings and reduced rings.

Lemma 2.1. (1) [20, Corollary 6] A ring R is a noncommutative local ring

of minimal order if and only if R is a noncommutative IFP ring of minimal

order.

(2) [6, Theorem] Let R be a finite ring of order m with identity. If m has a

cube free factorization, then R is a commutative ring.

(3) [6, Proposition] If R is a noncommutative of order p3, p a prime, then

R is isomorphic to U2(GF (p)).

In [25, Theorem 8], Xu and Xue proved that a noncommutative IFP ring of
minimal order is a local ring of order 16, and if R is such a ring, then R ∼= Ri

for some i ∈ {1, 2, 3, 4, 5}, where Ri’s are the rings in the following example.

Example 2.2. In [25, Example 7], we see five kinds of noncommutative finite
local rings with 16 elements, with Jacobson radicals of order ≥ 4. Let A〈x, y〉
be the free algebra generated by noncommuting indeterminates x, y over given
a commutative ring A, and (x, y) denote the ideal of A〈x, y〉 generated by x, y.

(1) Let R1 = Z2〈x, y〉/I, where I is the ideal of Z2〈x, y〉 generated by
x3, y3, yx, x2 − xy, y2 − xy. Note J(R1) = (x, y) and |J(R1)| = 8. Identify
x, y with their images in R1 for simplicity.

We will show that R1 is unit-duo. To see that, we first note that

X(R1) = J(R1)\{0} = {x, y, x2(= y2 = xy), x+ y, x+ x2, x2 + y, x+ y + x2},

and

G(R1) = {1, 1+x, 1+ y, 1+x2, 1+x+ y, 1+x+x2, 1+x2 + y, 1+x+ y+x2}.

Then we have

[x]ℓ = [x]r = [x+ x2]ℓ = [x+ x2]r = {x, x+ x2};

[y]ℓ = [y]r = [x2 + y]ℓ = [x2 + y]r = {y, y + x2};

[x2]ℓ = {x2} = [x2]r;

and

[x+ y]ℓ = [x+ y]r = [x+ y + x2]ℓ = [x+ y + x2]r = {x+ y, x+ y + x2}.

This implies that R1 is unit-duo.
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(2) Let R2 = Z4〈x, y〉/I, where I is the ideal of Z4〈x, y〉 generated by
x3, y3, yx, x2 − xy, x2 − 2, y2 − 2, 2x, 2y. Identify x, y with their images in R2

for simplicity. Note J(R2) = (x, y) = 2Z4 + (x, y) and |J(R2)| = 8.
Note that X(R2) = J(R2)\{0},

X(R2) = {x, y, x2(= y2 = xy = 2), x+ y, x+ x2(= 2 + x),

x2 + y(= 2 + y), x+ y + x2(= 2 + x+ y)},

and

G(R2) = {1, 1 + x, 1 + y, 1 + x2(= 3), 1 + x+ y, 1 + x+ x2(= 3 + x),

1 + x2 + y(= 3 + y), 1 + x+ y + x2(= 3 + x+ y)}.

So we get the same result as in the computation for R1, using the fact that

x = −x, y = −y, x2 = −x2 = 2 = y2 = −y2, and 1 + J(R2) = 3 + J(R2).

Thus R2 is also unit-duo.
(3) Let R3 =

{(

a b
0 a2

)

∈ U2(GF (22)) | a, b ∈ GF (22)
}

. Note

J(R3) =

(

0 GF (22)
0 0

)

and |J(R3)| = 4.

Then R3 is unit-duo since [a]ℓ = [a]r = J(R3) for any a ∈ X(R3).
(4) Let R4 = Z2〈x, y〉/I, where I is the ideal of Z2〈x, y〉 generated by

x3, y2, yx, x2 − xy. Identify x, y with their images in R4 for simplicity. It
is simply checked that R4 is isomorphic to D3(Z2) through the corresponding
x 7→ E12 + E23 and y 7→ E23. Note that

J(R4) = (x, y) =





0 Z2 Z2

0 0 Z2

0 0 0



 , |J(R4)| = 8, X(R4) = J(R4)\{0},

and

G(R4) =





1 Z2 Z2

0 1 Z2

0 0 1



 = 1 + J(R4).

We have [e23]ℓ = Z2e13 + Z2e23 and [e23]r = Z2e23; and [e12]ℓ = Z2e12 and
[e12]r = Z2e12+Z2e13. Thus [e23]ℓ * [e23]r and [e12]r * [e12]ℓ, concluding that
R4 is neither left nor right unit-duo.

(5) Let R5 = Z4〈x, y〉/I, where I is the ideal of Z4〈x, y〉 generated by
x3, y2, yx, x2 − xy, x2 − 2, 2x, 2y. Identify x, y with their images in R5 for
simplicity. Note J(R5) = (x, y) = 2Z4 + (x, y) and |J(R5)| = 8.

Note that X(R5) = J(R5)\{0},

X(R5) = {x, y, x2(= xy = 2), x+ y, x+ x2(= 2 + x),

x2 + y(= 2 + y), x+ y + x2(= 2 + x+ y)},

and

G(R5) = {1, 1 + x, 1 + y, 1 + x2(= 3), 1 + x+ y, 1 + x+ x2(= 3 + x),
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1 + x2 + y(= 3 + y), 1 + x+ y + x2(= 3 + x+ y)}.

We have [y]ℓ = {y, y+2} and [y]r = {y}; and [x+ y]ℓ = {x+ y} and [x+ y]r =
{x+ y, x+ y + 2}, so R5 is neither left nor right unit-duo.

We now have a complete structure of noncommutative unit-duo rings of
minimal order by help of Example 1.2.

Theorem 2.3. If R is a noncommutative right (left) unit-duo ring of minimal

order, then |R| = 16 and R is isomorphic to R1, R2, or R3 in Example 1.2.

Proof. Let R be a noncommutative unit-duo ring of minimal order. Then |R|
has a cube factorization by Lemma 2.1(2), entailing |R| ≥ 23. If |R| = 23, then
R is isomorphic to U2(GF (2)) by Lemma 2.1(3). But U2(GF (2)) is not unit-
duo. Consequently we must have |R| ≥ 16 also by help of Lemma 2.1(2). Thus
we must have |R| = 16 by the existence of the unit-duo ring R1 in Example
3.2(3).

Since R is semiperfect, R has a finite orthogonal set of local idempotents
whose sum is 1 by [13, Proposition 3.7.2], say R =

∑n

i=1 eiR such that each
eiRei is a local ring. But R is Abelian by Theorem 1.3, and so each eiR is an
ideal of R with eiR = eiRei. Since R is a noncommutative unit-duo ring of
minimal order, we must have n = 1 and R = e1R = e1Re1, seeing that R is
local. This yields that R is isomorphic to an Ri (i = 1, 2, 3, 4, 5) in Example
3.2 by Lemma 2.1(1). But R4 and R5 are neither left nor right unit-duo, so R
is isomorphic to R1, R2, or R3. The proof of the left case is similar. �

Let R be a noncommutative symmetric ring of minimal order. Then R is
isomorphic to the unit-duo ring R3 in Example 3.2 by [9, Theorem 2.6]. But R1

and R2 are non-symmetric. Recall that a noncommutative IFP ring of minimal
order is a local ring of order 16 and it is isomorphic to some Ri in Example 3.2.
But R4 and R5 are not right unit-duo. Also note that the rings R1, R2, and R3

are unit-duo as well. So one can obtain the following irreversible implications
by help of Theorem 2.3.

Corollary 2.4. (1) A noncommutative symmetric ring of minimal order is a

unit-duo ring of minimal order.

(2) A noncommutative right unit-duo ring of minimal order is an IFP ring

of minimal order.

(3) A ring is a noncommutative right unit-duo ring of minimal order if and

only if it is a noncommutative unit-duo ring of minimal order if and only if it

is a noncommutative left unit-duo ring of minimal order.

3. More properties of right unit-duo rings

In this section we investigate some properties of right unit-duo rings which
are concerned with annihilating conditions.
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Let R be a ring and x ∈ R. We usually write lR(x) = {a ∈ R | ax = 0} and
rR(x) = {b ∈ R |xb = 0}. We use annR(x) to denote lR(x) when lR(x) = rR(x),
i.e., annR(x) = {a ∈ R | ax = xa = 0}.

Lemma 3.1.

(1) If [x]r = [y]r for x, y ∈ R, then lR(x) = lR(y).
(2) Let R be a right unit-duo ring. If [x]ℓ = [y]ℓ for x, y ∈ R, then lR(x) =

lR(y).
(3) If [x]ℓ = [y]ℓ for x, y ∈ R, then rR(x) = rR(y).
(4) Let R be a left unit-duo ring. If [x]r = [y]r for x, y ∈ R, then rR(x) =

rR(y).
(5) Let R be a unit-duo ring. If [x] = [y], then annR(x) = annR(y).

Proof. (1) Let [x]r = [y]r for x, y ∈ R. Then x = yu and y = xv for some
u, v ∈ G(R). Letting a ∈ lR(x) and b ∈ lR(y), we have ay = a(xv) = 0 and
bx = byu = 0; hence lR(x) = lR(y).

(2) Let [x]ℓ = [y]ℓ for x, y ∈ R. Then since R is right unit-duo, y ∈ [x]ℓ ⊆ [x]r
and x ∈ [y]ℓ ⊆ [y]r. The remainder of the proof is similar to one of (1).

The proofs of the remainder are analogous to the preceding argument. �

The converse of Lemma 3.1(5) need not hold by the following.

Example 3.2. Let R = D2(Z) = V2(Z). Then R is commutative (hence
unit-duo). Note that ( a b

0 a ) is regular if and only if a 6= 0 by [7, Lemma 2.1].
Take x = ( 0 2

0 0 ) and y = ( 0 3
0 0 ) in R. Then we have

ann(x) =

(

0 Z
0 0

)

= ann(y).

But [x] 6= [y]. In fact,

[x] =

{(

0 2
0 0

)

,

(

0 −2
0 0

)}

, [y] =

{(

0 3
0 0

)

,

(

0 −3
0 0

)}

since all units in R are
{(

1 c
0 1

)

,

(

−1 d
0 −1

)}

with c, d ∈ Z.

We see conditions under which the converse of Lemma 3.1(5) holds as follows.

Theorem 3.3. Let A be a principal ideal domain and R = Vn(A). Then the

following conditions are equivalent:
(1) [α] = [β] whenever annR(α) = annR(β) for α, β ∈ X(R);
(2) A is a field.

Proof. (1)⇒(2). Assume on the contrary that A is not a field. Then we can
take distinct a, b ∈ X(A) (e.g., distinct nonzero prime elements) such that
a /∈ [b] and b /∈ [a], i.e., [a] 6= [b].
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Note first that R is commutative, and that














a b c · · · e f
0 a b · · · g e
...

...
... · · ·

...
...

0 0 0 · · · a b
0 0 0 · · · 0 a















is regular if and only if a 6= 0

by [10, Lemma 2.1].
Take α = (aij) and β = (bij) in R such that

aii = bii = 0 for all i and aij = a, bij = b for all i, j with i < j.

Then α, β ∈ X(R) and observe

Ae1n = ann(α) = ann(β) = Ae1n

as well.
Note that G(R) = {(aij) ∈ Vn(A) | aii ∈ G(A)}. This yields

[α] = {(cij) ∈ Vn(A) | cii = 0 and cij ∈ [a] for all i, j with i < j}

and

[β] = {(dij) ∈ Vn(A) | dii = 0 and dij ∈ [b] for all i, j with i < j}.

This leads us to have β /∈ [α] and α /∈ [β]. Thus [α] 6= [β], a contradiction to
the condition (1).

(2)⇒(1). Let A be a field. It suffices to examine the elements in X(R).
Recall that every matrix in X(R) is a nonzero matrix in Vn(A) with zero
diagonal. Let

γ =



















0 a1 a2 · · · an−2 an−1

0 0 a1 · · · an−3 an−2

...
...

... · · ·
...

...
0 0 0 · · · a1 a2
0 0 0 · · · 0 a1
0 0 0 · · · 0 0



















∈ X(R).

Note lR(m) = rR(m) = annR(m) for all m ∈ R.
If a1 6= 0, then annR(γ) = Ae1n.
If a1 = 0 and a2 6= 0, then annR(γ) = Ae1n +A(e1(n−1) + e2n).
Inductively, if a1 = · · · = ak−1 = 0 and ak 6= 0, then

annR(γ) = Ae1n +A(e1(n−1) + e2n) + · · ·+A(e1(n−k) + e2(n−k+1)

+ · · ·+ e(k−1)(n−1) + ekn).

This result leads us to conclude that s = t whenever annR(α) = annR(β) for
α, β ∈ X(R), where α = (aij) and β = (bij) such that a1 = · · · = as−1 = 0,
as 6= 0, and b1 = · · · = bt−1 = 0, bt 6= 0. Thus we have [α] = [β], using the
condition that A is a field. �
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We examine the property of a ring R when R[x] is right unit-duo.

Proposition 3.4. (1) Let R be a ring and suppose that R[x] is right unit-duo.
Then au = ua for a ∈ R and u ∈ G(R).

(2) Let R be a division ring and R[x] is right unit-duo. Then R is a field.

Proof. (1) Let a ∈ R and u ∈ G(R). Since R[x] is right unit-duo, u(a + x) =
(a + x)u′ for some u′ ∈ G(R[x]), forcing u′ ∈ G(R). This yields u = u′ and
ua = au′ = au. (2) is an immediate consequence of (1). �

In closing, we pose the following question:

Question. Are right duo rings right unit-duo when they are not domains?
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