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PARAMETER CHANGE TEST FOR NONLINEAR TIME

SERIES MODELS WITH GARCH TYPE ERRORS

Jiyeon Lee and Sangyeol Lee

Abstract. In this paper, we consider the problem of testing for a param-
eter change in nonlinear time series models with GARCH type errors. We
introduce two types of cumulative sum (CUSUM) tests: estimates-based
and residual-based tests. It is shown that under regularity conditions,
their limiting null distributions are the sup of independent Brownian
bridges. A simulation study is conducted for illustration.

1. Introduction

Nonlinear time series models have been popular in modeling time series over
decades and various nonlinear time series models have been proposed by many
researchers. For a review of classical nonlinear time series models, we refer to
[21]: see also [7], [19], and [20] for nonlinear GARCH models. Further, [2],
[4], [12] and [13] studied the stability and asymptotic properties of nonlinear
autoregressive models with pure GARCH errors. Among nonlinear autore-
gressive models, smooth transition autoregressive (STAR) models (cf. [3] and
[15]) have attracted much attention from practitioners since they are designed
to cope with smoothly varying changes in underlying models of time series:
STAR models can be viewed as a continuous version of threshold models with
abrupt regime changes. Later, to enhance the practicality of STAR models in
the financial time series analysis, [1] and [14] designated STAR-GARCH mod-
els. Recently, [16] studied the asymptotic properties of nonlinear autoregressive
models with first-order nonlinear GARCH errors that include various nonlinear
models with conditional volatility equations such as pure AR-GARCH, asym-
metric AR-GARCH and smooth transition GARCH models.

The parameter change test in time series models has long been a popular
issue among researchers since time series often experience parameter changes
due to critical events and policy changes. For a review of early works, we refer
to [8] and the references therein: see also [10], [11] and [18]. The main objective
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of this study is to establish a theoretical foundation on the CUSUM test in gen-
eral nonlinear autoregressive models with first-order nonlinear GARCH errors
introduced in [16]. To this task, we consider the estimates- and residual-based
CUSUM tests and demonstrate that under regularity conditions, their limiting
null distributions are the sup of independent Brownian bridges, which is a key
result to perform the proposed CUSUM tests. Theoretically, the former has an
advantage over the latter because it can detect a change of all model parame-
ters, while the latter actually detects a change of a functional of parameters.
In practice, however, the estimates-based CUSUM test has a defect to perform
poorly in GARCH type models since the parameter estimates for small lags in
the CUSUM tests are heavily biased and eventually produce severe size dis-
tortions: this phenomenon is escalated when the model complexity increases.
In comparison, the residual-based CUSUM test does not suffer from size dis-
tortions since it eliminates the heteroscedasticity of time series as seen in Lee
et al. [11] and Lee and Lee [9]: further, it is reasonably robust against model
misspecification: see de Pooter and van Dijk [5]. In our simulation study, we
consider the asymmetric GARCH (AGARCH) model and the logistic smooth
transition AR-smooth transition GARCH (STAR-STGARCH) model. For the
latter, we focus on the residual-based CUSUM test since the estimates-based
CUSUM test performs poorly due to the difficulty that arises in parameter
estimation.

The rest of this paper is organized as follows. In Section 2, we introduce the
nonlinear autoregressive models with nonlinear GARCH models and establish
the asymptotic properties of quasi-MLE (QMLE). In Section 3, we study the
estimates- and residual-based CUSUM tests and derive their limiting null distri-
butions. In Section 4, we perform a simulation study. In Section 5, concluding
remarks are provided. All the proofs are given in the Appendix.

2. Nonlinear autoregressive model

Let us consider the model:

yt = f(yt−1, . . . , yt−p;µ0) + σtǫt,(1)

σ2
t = g(u0t−1, σ

2
t−1; θ0),(2)

where u0t = yt−f(yt−1, . . . , yt−p;µ0) and ǫt are i.i.d. random variables with
E(ǫt)=0 and E(ǫ2t )=1, independent of {ys : s < t}. The term f(yt−1, . . . , yt−p;
µ0) is the conditional mean of yt, a function of p lagged past observations and
the m-dimensional true parameter vector µ0, while the term g(u0t−1, σ

2
t−1; θ0)

is the conditional variance of yt, a function of u0t−1, σ
2
t−1 and θ0 = (µT

0 , λ
T
0 )

T ,
where λ0 denotes the l-dimensional true parameter vector associated with con-
ditional variance. We set θ = (µT , λT )T ∈ Θ =M ×Λ ⊂ R

m+l, where µ and λ
do not have common elements and M and Λ are compact subsets of Rm and
R

l, respectively.
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In what follows, we assume that the data is generated by a stationary and
ergodic process with finite moments of some order as follows:

(DGP) (yt, σ
2
t ) in (1) and (2) is stationary and ergodic with E|yt|2r < ∞ and

E|σ2
t |r <∞ for some r > 0.

Sufficient conditions to ensure (DGP) can be found in [16].
Suppose that y1, . . . , yn are observed and one wishes to test the following

hypotheses:

H0 : The true parameter θ0 does not change over y1, . . . , yn. vs.(3)

H1 : not H0.

To perform a test, we estimate the true parameter θ0 based on the quasi log-
likelihood estimator (QMLE) of θ0 as in [17], which is defined as the minimizer
of the following objective function Ln(θ), that is,

θ̂n = argmin
θ∈Θ

1

n

n
∑

t=1

(

log(ht(θ)) +
u2t (µ)

ht(θ)

)

(4)

= argmin
θ∈Θ

1

n

n
∑

t=1

lt(θ) = argmin
θ∈Θ

Ln(θ),

where ut(µ) and ht(θ) are defined recursively by

ut(µ) = yt − f(yt−1, . . . , yt−p;µ),

ht(θ) = g(ut−1(µ), ht−1(θ); θ),

and the initial values are assumed to be given properly (cf. [17], page 1243).
Owing to Proposition 1 of [17], ht(θ) approximates the stationary and er-

godic solution h∗t (θ) which coincides with true conditional variance σ2
t a.s. when

θ = θ0. We also define L∗
n(θ) =

1
n

∑n
t=1 l

∗
t (θ), where l

∗
t (θ) = log(h∗t (θ))+

u2
t (µ)

h∗

t (θ)
.

3. Cusum test

To test the hypotheses in (3), we introduce the two cusum tests based on
the parameter estimates and residuals.

3.1. Cusum test based on the estimates of parameters

Let θ̂k be the QMLE from the observations up to time k. Then, the test
statistic is given by

TE
n = max

1≤k≤n
TE
n,k = max

1≤k≤n

k2

n

(

θ̂k − θ̂n

)T

Σ̂n

(

θ̂k − θ̂n

)

,

where Σ̂n is a consistent estimator of Σ = J (θ0)I(θ0)−1J (θ0) with the positive
definite matrices

J (θ0) = −E
[

∂2l∗t (θ0)

∂θ∂θT

]

and I(θ0) = E

[

∂l∗t (θ0)

∂θ

∂l∗t (θ0)

∂θT

]

.
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Provided that θ̂n and Σ̂n satisfy the following conditions under H0:

(T1) θ̂n is a strongly consistent estimator of θ0;
(T2) For 0 ≤ s ≤ 1, there exists a positive definite matrix Σ such that

[ns]√
n

(

θ̂[ns] − θ̂n

)

w−→ Σ−1/2W o
d (s) as n→ ∞,

where d = m+ l and W o
d denotes a d-dimensional Brownian bridge;

(T3) Σ̂n is a consistent estimator of Σ in (T2),

it can be seen that

TE
n

w−→ sup
0≤s≤1

|W o
d (s)|

2
, n→ ∞

(see Theorems 1 and 2 below), where |·| denotes the Euclidian norm for any
scalars, vectors or matrices; the Lp-norm for random variables is denoted by

‖X‖ = (E[X ]p)
1/p

.

Further, to ensure (T1)-(T3), one needs to assume following regularity con-
ditions:

(C1) θ0 lies in the interior of the compact set Θ.
(C2) (i) g(u, x; θ) is continuous in (u, x, θ) ∈ R× R+ ×Θ.

(ii) There exist 0 < ρ < 1 and C < ∞ such that for all u ∈ R, x ∈ R+

and θ ∈ Θ,

g(u, x; θ) ≤ ρx+ C(1 + u2).

(iii) There exists 0 < κ < 1 such that for all u ∈ R, x1, x2 ∈ R+ and
θ ∈ Θ,

|g(u, x1; θ)− g(u, x2; θ)| ≤ κ|x1 − x2|.
(C3) (i) f(y1, . . . , yp;µ) is continuous in (y1, . . . , yp) ∈ R

p and is Borel-
measurable in µ.
(ii) There exists C <∞ such that for all (y1, . . . , yp) ∈ R

p and µ ∈M ,

|f(y1, . . . , yp;µ)| ≤ C(1 +

p
∑

i=1

|yi|).

(C4) For some g > 0, inf(u,x,θ)∈R×R+×Θ g(u, x; θ) = g.
(C5) (i) f(y1, . . . , yp;µ) = f(y1, . . . , yp;µ0) a.s. implies µ = µ0.

(ii) h∗t (µ0, λ) = σ2
t a.s. implies µ = µ0.

Below, we use the notation:

∂µf(y1, . . . , yp;µ) =
∂f(y1,...,yp;µ)

∂µ and ∂µµf(y1, . . . , yp;µ) =
∂2f(y1,...,yp;µ)

∂µ∂µT ;

∂v1g(u, h; θ) = ∂g(u,h;θ)
∂v1

and ∂v1v2g(u, h; θ) = ∂2g(u,h;θ)

∂v1∂vT
2

, where v1 and v2 can

be any of u, h and θ; ∂θht(θ) = ∂ht(θ)
∂θ and ∂θθht(θ) = ∂2ht(θ)

∂θ∂θT ; ∂θh
∗
t (θ) and

∂θθh
∗
t (θ) are similarly defined.

It is well known that Assumptions (C1)-(C5) guarantee (T1) (cf. [17]). Fur-
ther, to deal with (T2) and (T3), we assume that θ0 in an interior point of a
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compact convex subset Θ0 = M0 × Λ0 of Θ, and furthermore, the following
conditions are fulfilled:

(N1) (i) f(y1, . . . , yp;µ) is twice continuously differentiable with respect to
µ on M0 for all (y1, . . . , yp) ∈ R

p.
(ii) g(u, x; θ) is twice continuously differentiable with respect to u, x
and θ on R× R+ ×Θ0.

(N2) (i) For any (y1, . . . , yp) ∈ R
p and µ ∈ M0, |∂µf(y1, . . . , yp;µ)| and

|∂µµf(y1, . . . , yp;µ)| are bounded by C(1 +
∑p

i=1 |yi|) for some C > 0.
(ii) For any u ∈ R, x ∈ R+ and θ ∈ Θ0, |∂ug(u, h; θ)|, |∂θθg(u, h; θ)|,
|∂uug(u, h; θ)|, |∂θug(u, h; θ)| and |guθ(u, h; θ)| are bounded by C(1 +
u2 + x) for some C > 0.
(iii) For any u ∈ R, x1, x2 ∈ R+ and θ ∈ Θ0,

|∂v1g(u, x1; θ)− ∂v1g(u, x2; θ)| ≤ κ′|x1 − x2|,

|∂v1v2g(u, x1; θ)− ∂v1v2g(u, x2; θ)| ≤ κ′|x1 − x2|
for some 0 < κ′ < 1, where v1 and v2 can be any of u, h and θ.

(N3) Assumption (DGP) holds with r = 2 and E(ǫ8t ) <∞.

(N4) ‖ supθ∈Θ0

|∂θh
∗

t (θ)|
h∗

t (θ)
‖4 <∞ and ‖ supθ∈Θ0

|∂θθh
∗

t (θ)|
h∗

t (θ)
‖2 <∞.

(N5) (i) The distribution of ǫt is not concentrated at two points.
(ii) νT1 ∂µf(y1, . . . , yp;µ0) = 0 a.s. for some ν1 ∈ R

m implies ν1 = 0.
(iii) νT2 ∂λg(u0,t, σ

2
t ; θ0) = 0 a.s. for some ν2 ∈ R

l implies ν2 = 0.

Particularly, (N5) implies that J (θ0) and I(θ0) are positive definite (cf. [17]).
To obtain the null distribution of TE

n , we should check if (T2) holds. To

task this, we apply a functional central limit theorem to θ̂[ns] for 0 ≤ s ≤ 1.
Since L[ns](θ) is twice continuously differentiable with respect to θ and has a

maximum at θ = θ̂[ns], by Taylor’s theorem, we can express

0 = ∂θL[ns](θ̂[ns]) = ∂θL[ns](θ0) + ∂2θθL[ns](θ̄[ns])(θ̂[ns] − θ0),

where θ̄[ns] is an appropriate intermediate point between θ̂[ns] and θ0. Thus,
we have

J (θ0)
(

θ̂[ns] − θ0

)

= ∂θL[ns](θ0) +
(

∂2θθL[ns](θ̄[ns]) + J (θ0)
)

(θ̂[ns] − θ0)(5)

= ∂θL
∗
[ns](θ0) + ∆1[ns] +∆2[ns],

where

∆1[ns] =
(

∂θL[ns](θ0)− ∂θL
∗
[ns](θ0)

)

and

∆2[ns] =
(

∂2θθL[ns](θ̄[ns]) + J (θ0)
)

(θ̂[ns] − θ0),

and subsequently,

(6) J (θ0)
[ns]√
n

(

θ̂[ns] − θ0

)

=
[ns]√
n
∂θL

∗
[ns](θ0) +

[ns]√
n
∆1[ns] +

[ns]√
n
∆2[ns].
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Note that

∂θl
∗
t (θ) =

1

h∗t (θ)

(

1− u2t (µ)

h∗t (θ)

)

∂θh
∗
t (θ)− 2

ut(µ)

h∗t (θ)
∂µf(yt−1, . . . , yt−p;µ),

and thus,

∂θl
∗
t (θ0) =

1

σ2
t

(

1− ǫ2t
)

∂θh
∗
t (θ0)− 2

ǫt
σt
∂µf(yt−1, . . . , yt−p;µ0).

Then, it can be shown that E{∂θl∗t (θ0) | Ft−1} = 0 and I(θ0) is finite. Hence,
{I(θ0)−1/2∂θl

∗
t (θ0),Ft} forms a stationary and ergodic martingale difference

sequence, and by using the functional central limit theorem for martingale
difference arrays and the Wold-Craér device, it can be shown that

(7)
[ns]√
n
∂θL

∗
[ns](θ0) =

1√
n

[ns]
∑

t=1

∂θl
∗
t (θ0)

w−→ I(θ0)1/2Wd(s)

in the D
d[0, 1] space (cf. [6]), where Wd is a d-dimensional Brownian motion.

Then, using (7), Lemmas 1 and 2 in Appendix, we obtain the following result,
the proof of which is provided in the Appendix.

Theorem 1. Suppose that assumptions (DGP), (C1)-(C5) and (N1)-(N5) hold.
Then, under H0, we have

TE
0n = max

1≤k≤n

k2

n

(

θ̂k − θ̂n

)T

Σ
(

θ̂k − θ̂n

)

w−→ sup
0≤s≤1

|W o
d (s)|2 , n→ ∞,

where Σ = J (θ0)I(θ0)−1J (θ0) and W o
d denotes a d-dimensional Brownian

bridge.

To apply the CUSUM test in real practice, we replace J (θ0) and I(θ0)
by their consistent estimators Jn and In. For instance, one can employ the
estimators in Theorem 2 of [17]. To ensure their consistency, namely (T3),
in addition to the assumptions in Theorem 1, one has to assume (DGP) with
r = 4 to fulfill (N3).

Theorem 2. Suppose that (DGP) with r = 4, (C1)-(C5) and (N1)-(N5) hold.

Then, under H0, we have

TE
n = max

1≤k≤n
TE
n,k = max

1≤k≤n

k2

n

(

θ̂k − θ̂n

)T

Σ̂n

(

θ̂k − θ̂n

)

w−→ sup
0≤s≤1

|W o
d (s)|2 ,

where Σn = JnI−1
n Jn and W o

d denotes a d-dimensional Brownian bridge.

We reject H0 if TE
n ≥ Cα at the nominal level α, where Cα is the 100(1−α)

quantile values of sup0≤s≤1 |W o
d (s)|2. The critical values for α = 0.01, 0.05, 0.10

are provided in Table 1 in [8]. As mentioned in Introduction, because θ̂k
for small k’s can be severely biased from θ0, to implement TE

n in practice,
one may need a fairly large sample size and a modification of the test, say,
maxkn≤k≤n T

E
n,k, where kn is a sequence of positive integers diverging to ∞
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with kn/n → 0 as n → ∞. Nevertheless, this remedy still may not work so
well in many situations dealing with GARCH type models, and therefore, the
residual-based CUSUM test below is taken into consideration as an alternative.

3.2. Cusum test based on the residuals

The residual-based CUSUM test has the form of

1
√

nV ar(ǫ21)
max

1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

ǫ2t −
(

k

n

) n
∑

t=1

ǫ2t

∣

∣

∣

∣

∣

.

Since ǫ2t are not observable, we replace ǫ2t by the residuals ǫ̂2t = ut(µ̂n)√
ht(θ̂n)

, where

θ̂n = (µ̂T
n , λ̂

T
n )

T is the QMLE of θ0 in (4).
Since

1√
n

∣

∣

∣

∣

∣

k
∑

t=1

ǫ̂2t −
(

k

n

) n
∑

t=1

ǫ̂2t

∣

∣

∣

∣

∣

≤ 1√
n

∣

∣

∣

∣

∣

k
∑

t=1

ǫ2t −
(

k

n

) n
∑

t=1

ǫ2t

∣

∣

∣

∣

∣

+
1√
n

∣

∣

∣

∣

∣

k
∑

t=1

(ǫ̂2t − ǫ2t )−
(

k

n

) n
∑

t=1

(ǫ̂2t − ǫ2t )

∣

∣

∣

∣

∣

and

1
√

nV ar(ǫ21)

∣

∣

∣

∣

∣

k
∑

t=1

ǫ2t −
(

k

n

) n
∑

t=1

ǫ2t

∣

∣

∣

∣

∣

w−→ |W o
1 (s)| as n→ ∞,

provided that the following conditions are satisfied under H0:

(R1)
1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

(ǫ̂2t − ǫ2t )−
(

k

n

) n
∑

t=1

(ǫ̂2t − ǫ2t )

∣

∣

∣

∣

∣

= oP (1);

(R2) τ̂2n =
1

n

n
∑

t=1

ǫ̂4t − (
1

n

n
∑

t=1

ǫ̂2t )
2 P−→ V ar(ǫ21),

it can be seen that

1√
nτ̂n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

ǫ̂2t −
(

k

n

) n
∑

t=1

ǫ̂2t

∣

∣

∣

∣

∣

w−→ sup
0≤s≤1

|W o
1 (s)|, n→ ∞.

To verify (R1) and (R2), we express the residuals as the sum of true errors
and additional terms as follows:

ǫ̂2t =
(yt−f(yt−1,...,yt−p;µ̂n))

2

ht(θ̂n)
(8)

= ǫ2t +
ǫ2t(σ2

t−ht(θ̂n))
σ2
t

+
ǫ2t(σ2

t−ht(θ̂n))
2

σ2
tht(θ̂n)

+
2u0t(µ0−µ̂n)

T∂µf(yt−1,...,yt−p;µ̄n)

ht(θ̂n)

+
(uot(µ0−µ̂n)

T ∂µf(yt−1,...,yt−p;µ̄n))
2

ht(θ̂n)

= ǫ2t + I1,t + I2,t + I3,t + I4,t,
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where µ̄n is an appropriate intermediate point between µ̂n and µ0. Then, using
Lemmas 3 and 4 in the Appendix, we obtain the following result.

Theorem 3. Suppose that assumptions (DGP) with r = 4, (C1)-(C5) and

(N1)-(N5) hold. Then, under H0, we have

TR
n = max

1≤k≤n
TR
n,k

=
1√
nτ̂n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

ǫ̂2t −
(

k

n

) n
∑

t=1

ǫ̂2t

∣

∣

∣

∣

∣

w−→ sup
0≤s≤1

|W o
1 (s)|, n→ ∞.

4. Simulation results

In this section, we evaluate the performance of the residual-based CUSUM
test TR

n proposed in Section 3. Among the nonlinear models with GARCH
errors, we consider the AGARCH model and the logistic smooth transition
AR-smooth transition GARCH (STAR-STGARCH) model. For these models,
the conditional mean and the conditional variance in (1) and (2) are given as
follows:

• AGARCH(1,1) model:

f(yt−1, . . . , yt−p;µ0) = 0,

g(u0t−1, σ
2
t−1; θ0) = ω + α(|u0t−1| − γu0t−1)

2 + βσ2
t−1.

• Logistic STAR(p)-STGARCH(1,1) model:

f(yt−1, . . . , yt−p;µ0)=φ0+ψ0F (yt−1;ϕ1, ϕ2)+

p
∑

j=1

(φj+ψjF (yt−1;ϕ1, ϕ2))yt−j ,

g(u0t−1, σ
2
t−1; θ0) = ω0 + (α1 + α2G(u0t−1; γ1, γ2))u

2
0t−1 + βσ2

t−1,

where

F (y;ϕ1, ϕ2) = [1 + exp(−ϕ2(y − ϕ1))]
−1,

G(u; γ1, γ2) = [1 + exp(−γ2(u− γ1))]
−1.

Some sufficient conditions to ensure the assumptions in Theorems 2 and 3 for
the above models are given in Section 6 of [17].

For the null hypothesis, we consider the following two cases:

• Case I: AGARCH(1,1) model with the parameter vector θT0 =(ω, α, γ,
β) = (0.5, 0.2, 0.2, 0.3).

• Case II: Logistic STAR(1)-STGARCH(1,1) model with the parameter
vectors θT0 = (µT

0 , λ
T
0 ), µ

T
0 = (φ0, φ1, ψ0, ψ1, ϕ1, ϕ2) = (−0.3,−0.5, 0.4,

1.0, 0.0, 1.0) and λT0 = (ω, α1, α2, β, γ1, γ2) = (0.5, 0.1, 0.2, 0.3, 1.0, 1.0).

To examine the power, we consider the alternative hypothesis:

H1 : θ0 changes to θ′0 occurs at t = [n/2].



PARAMETER CHANGE TEST FOR NONLINEAR TIME SERIES MODELS 511

For each case, sets of n = 500, 1000 and 2000 observations are generated from
the model with ǫt ∼iid N(0, 1) in (1). The empirical sizes and powers are
calculated at the nominal levels 0.01, 0.05 and 0.10 and summarized in Tables
1 and 3. The figures in each table stand for the proportion of the number of
rejections of the null hypothesis “H0: No changes occur in θ0”, out of 1000
repetitions.

Tables 1 and 2 report the empirical sizes and powers in Case I. Here, we
compare the residual-based CUSUM test with the estimates-based CUSUM
test. The figures in parentheses are for the latter. Table 1 shows that TR

n and
TE
n produce no severe size distortions and the empirical size gets closer to the

nominal levels as n increases. Table 2 also shows that both the tests produce
good powers in most cases. As anticipated, the power increases remarkably as n
increases and the parameters experience changes more significantly. However,
it is noteworthy that our CUSUM test is not suitable to detect the change of
the parameter γ, and a change of γ does not affect the performance of the
CUSUM test. Although the result on TE

n appear to be similar to that on TR
n ,

TR
n has merit over TE

n in terms of convenience and the computation speed since
the parameter estimation in TE

n should be implemented for all k’s.
In Case II, the estimation of STAR-STGARCH parameters can be prob-

lematic because it is highly sensitive to the choice of optimization algorithms
and initial values. It is well known that the threshold values ϕ1, γ1 and the
transition rates ϕ2, γ2 are difficult to estimate, especially with small samples
(cf. [1]), which seriously damages the estimates-based CUSUM test. Thus, in
Case II, we only focus on the residual-based CUSUM test. Table 3 illustrates
that TR

n has no severe size distortions and the empirical size gets closer to the
nominal levels as n increases. It could be reasoned that the stability of the
residual-based test is owing to its robustness property against model misspec-
ification, but a careful analysis is needed to confirm this conjecture. Table 4
shows that the powers of TR

n increases to 1 when n increases and more than
two parameters change. Particularly, it can be seen that the powers for the
single parameter change cases are rather low. However, this result is due to
the fact that the magnitude of the changes is not large enough: it is because
all the parameters must lie in a region to satisfy the stationarity assumption.
Meanwhile, it turns out that TR

n does not detect well the change of threshold
value γ1 and transition rate γ2: in other words, the change of threshold value
and transition rate does not much contribute to improving the performance of
the test. This indicates that the residual-based CUSUM test has a limitation
in the application to STAR-STGARCH models and a more refined study is
required to overcome this shortcoming.

5. Concluding remarks

Thus far, we have studied the CUSUM test for nonlinear autoregressive mod-
els with nonlinear GARCH errors. To establish a theoretical foundation on the
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Table 1. Empirical sizes for case I

n 0.01 0.05 0.10

500 0.004 0.039 0.096
(0.021) (0.061) (0.113)

1000 0.010 0.045 0.097
(0.017) (0.058) (0.109)

2000 0.014 0.053 0.096
(0.011) (0.055) (0.108)

CUSUM test in this class of models, we obtained the limiting null distribution
of the estimates- and residual-based CUSUM tests. Our simulation study con-
firms that the CUSUM test is a functional tool to detect a parameter change.
The STAR-STGARCH model is an important example in practice and has its
own merit since the model itself can accommodate parameter changes. How-
ever, as seen in [1], there are non-trivial difficulties such that the estimates are
quite sensitive to the choice of optimization algorithms and initial values, which
easily leads to a false conclusion with a high possibility. Also, it turned out that
some model parameters are not well detected by the CUSUM method. Hence,
we did not pursue a further empirical study in STAR-STGARCH models. We
leave this issue as a task of our future study.

Appendix

In this section, we provide the proofs for the theorems presented in the
previous section.

Lemma 1. Suppose that the assumptions in Theorem 2 hold. Then, under H0,

max
1≤k≤n

k√
n
|∆1k| = oP (1).

Proof. We can express

max
1≤k≤n

1√
n

∣

∣

∣

∣

∣

k
∑

t=1

∂θlt(θ0)−
k
∑

t=1

∂θl
∗
t (θ0)

∣

∣

∣

∣

∣

≤ 1√
n

n
∑

t=1

|∂θlt(θ0)− ∂θl
∗
t (θ0)|

≤ 1√
n

n
∑

t=1

sup
θ∈Θ0

|∂θlt(θ0)− ∂θl
∗
t (θ0)| .

Hence, using Lemma D.5 of [17], we have
∑n

t=1 supθ∈Θ0
|∂θlt(θ0)− ∂θl

∗
t (θ0)| <

∞. Thus, the right hand side of (27) is oP (1) and the lemma is validated. �

Lemma 2. Suppose that the assumptions in Theorem 2 hold. Then, under H0,

max
1≤k≤n

k√
n
|∆2k| = oP (1).
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Table 2. Empirical powers for case I

θ0 → θ′0 n 0.01 0.05 0.10

500 0.470 0.748 0.838
(0.522) ( 0.802) (0.867)

ω : 0.5 → 0.3 1000 0.934 0.984 0.993
(0.945) (0.985) (1.000)

2000 0.999 0.999 1.000
(1.000) (1.000) (1.000)

500 0.063 0.208 0.315
(0.111) (0.259) (0.350)

α : 0.2 → 0.4 1000 0.170 0.396 0.532
(0.181) (0.413) (0.561)

2000 0.495 0.743 0.828
(0.510) (0.755) (0.881)

500 0.194 0.446 0.592
(0.231) (0.510) ( 0.622)

β : 0.3 → 0.5 1000 0.592 0.812 0.899
( 0.612) (0.819) (0.905)

2000 0.956 0.991 0.991
(0.950) (0.999) (1.000)

500 0.007 0.041 0.095
(0.019) (0.059) (0.101)

γ : 0.2 → 0.4 1000 0.009 0.048 0.097
(0.013) (0.050) (0.105)

2000 0.019 0.059 0.109
(0.014) (0.059) (0.110)

Table 3. Empirical sizes for case II

n 0.01 0.05 0.10

500 0.004 0.040 0.090
1000 0.013 0.044 0.093
2000 0.011 0.045 0.093

Proof. Let m(n) be a sequence of positive integer satisfying m(n) → ∞ and
m(n)/

√
n→ 0 as n→ ∞. We express

(9) max
1≤k≤n

k√
n
|∆2k| ≤ max

1≤k≤m(n)

k√
n
|∆2k|+ max

m(n)<k≤n

k√
n
|∆2k| .
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Table 4. Empirical powers for case II

θ0 → θ′0 n 0.01 0.05 0.10

500 0.407 0.707 0.815
ω : 0.5 → 0.3 1000 0.901 0.972 0.983

2000 1.000 1.000 1.000
500 0.032 0.116 0.158

α1 : 0.1 → 0.2 1000 0.073 0.208 0.281
2000 0.079 0.378 0.473
500 0.021 0.108 0.129

α2 : 0.2 → 0.3 1000 0.032 0.153 0.187
2000 0.043 0.189 0.291

α1 : 0.1 → 0.3 500 0.153 0.408 0.530
α2 : 0.2 → 0.1 1000 0.454 0.677 0.778

2000 0.884 0.901 0.953
500 0.205 0.545 0.670

β : 0.3 → 0.5 1000 0.736 0.868 0.890
2000 0.989 1.000 1.000
500 0.031 0.093 0.134

γ1 : 1.0 → 0 1000 0.021 0.082 0.154
2000 0.040 0.081 0.163
500 0.011 0.042 0.116

γ2 : 1.0 → 2.0 1000 0.042 0.063 0.126
2000 0.031 0.068 0.123

Since ∆2k = J (θ0)
(

θ̂k − θ0

)

− ∂θL
∗
k(θ0)−∆1k, we have

max
1≤k≤m(n)

k√
n
|∆2k| ≤ |J (θ0)|

m(n)√
n

sup
θ∈Θ0

|θ − θ0|+
m(n)√
n

1

m(n)

m(n)
∑

t=1

|∂θl∗t (θ0)|

(10)

+ max
1≤k≤n

k√
n
|∆1k|.

Since ∂θl
∗
t (θ0) is stationary and E|∂θl∗t (θ0)| ≤ |I(θ0)|1/2 <∞, we have

1

m(n)

m(n)
∑

t=1

|∂θl∗t (θ0)| = OP (1).

This together with Lemma 1 implies the right hand side of (10) is oP (1).
Meanwhile, if ∂2θθLk(θ̄k) is invertible, ∆2k can be rewritten as

∆2k =
(

∂2θθLk(θ̄k) + J (θ0)
)

(−∂θLk(θ0))
(

∂2θθLk(θ̄k)
)−1

.
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Note that since J (θ0) is invertible, if |M−J (θ0)| ≤ (2|J (θ0)
−1|)−1, the matrix

M is invertible and |M−1|+ |J (θ0)
−1| ≤ C, where C is a constant independent

of M , and thus, if maxm(n)<k≤n | − ∂2θθLk(θ̄k) − J (θ0)| ≤ (2|J (θ0)
−1|)−1, it

must hold that maxm(n)<k≤n |∂2θθLk(θ̄k)
−1| ≤ C.

Hence, since maxm(n)<k≤n |∂2θθLk(θ̄k) + J (θ0)| = oP (1) and, due to (7),

max
1≤k≤n

∣

∣

∣

∣

∣

1√
n

k
∑

t=1

∂θl
∗
t (θ0)

∣

∣

∣

∣

∣

w−→ sup
0≤s≤1

|I(θ0)1/2Wd(s)|,

we have

max
m(n)<k≤n

k√
n
|∆2k|(11)

≤ C max
m(n)<k≤n

∣

∣∂2θθLk(θ̄k) + J (θ0)
∣

∣ max
1≤k≤n

∣

∣

∣

∣

∣

1√
n

k
∑

t=1

∂θl
∗
t (θ0)

∣

∣

∣

∣

∣

= oP (1).

Then, the lemma is asserted by (10) and (11). �

Proof of Theorem 1. In view of (6), we can express

J (θ0)
[ns]√
n
(θ̂[ns] − θ̂n) = J (θ0)

[ns]√
n

(

θ̂[ns] − θ0 − θ̂n + θ0

)

=
[ns]√
n
∂θL

∗
[ns](θ0)−

[ns]√
n
∂θL

∗
n(θ0) +

[ns]√
n

(

∆1[ns] −∆1n

)

+
[ns]√
n

(

∆2[ns] −∆2n

)

.

Hence, we have

sup
0≤s≤1

∣

∣

∣

∣

∣

∣

J (θ0)
[ns]√
n
(θ̂[ns] − θ̂n)−





1√
n

[ns]
∑

t=1

∂θl
∗
t (θ0)−

[ns]

n

1√
n

n
∑

t=1

∂θl
∗
t (θ0)





∣

∣

∣

∣

∣

∣

≤ 2 sup
0≤s≤1

[ns]√
n
|∆1[ns]|+ 2 sup

0≤s≤1

[ns]√
n
|∆2[ns]|.

Further, by (7), we obtain

[ns]√
n
∂θL

∗
[ns](θ0)−

[ns]√
n
∂θL

∗
n(θ0)(12)

=
1√
n

[ns]
∑

t=1

∂θl
∗
t (θ0)−

[ns]

n

1√
n

n
∑

t=1

∂θl
∗
t (θ0)

w−→ I(θ0)1/2(Wd(s)− sWd(1)) = I(θ0)1/2W o
d (s).

Combining these and the results of Lemmas 1 and 2, we establish the theorem.
�
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Lemma 3. Let Ii,t, i = 1, 2, 3, 4, be those in (8) and suppose that the assump-

tions in Theorem 3 hold. Then, under H0,

1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

Ii,t −
(

k

n

) n
∑

t=1

Ii,t

∣

∣

∣

∣

∣

= oP (1) for i = 1, 2, 3, 4.

Proof. First, we deal with I1,t. By Taylor’s theorem, we have

σ2
t − ht(θ̂n)(13)

= σ2
t − ht(θ0) + (θ0 − θ̂n)

T ∂θh
∗
t (θ̄n) + ht(θ0)− h∗t (θ0) + h∗t (θ̂n)− ht(θ̂n)

:= J1,t + J2,t + J3,t + J4,t,

where θ̄n is an appropriate intermediate point between θ̂n and θ0. Further, by
(N2)(iii), we have

(14)
∣

∣σ2
t − ht(θ0)

∣

∣ ≤ κt−1
∣

∣σ2
1 − h1(θ0)

∣

∣ .

Therefore, by using (C4), (N3) and the hölder’s inequality, we have

E

(

1√
n

n
∑

t=1

∣

∣σ2
t − ht(θ0)

∣

∣

σ2
t

ǫ2t

)

≤ 1

g

(

E
∣

∣σ2
1 − h1(θ0)

∣

∣

2
)1/2

(

E(ǫ21)
)1/2 1√

n

n
∑

t=1

κt−1 a.s.−→ 0,

which in turn implies

(15)
1√
n

max
1≤k≤n

k
∑

t=1

∣

∣

∣

∣

J1,t
ǫ2t
σ2
t

∣

∣

∣

∣

≤ 1√
n

n
∑

t=1

∣

∣

∣

∣

J1,t
ǫ2t
σ2
t

∣

∣

∣

∣

= oP (1).

Meanwhile, concerning J2,t, it suffices to show that

(16)
1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

(

J2,t
ǫ2t
σ2
t

− EJ2,t
ǫ2t
σ2
t

)

∣

∣

∣

∣

∣

= oP (1),

since ∂θh
∗
t (θ̄n) and σ

2
t are stationary and ergodic from Proposition 2 of [17] and

(DGP). Owing to the invariance principle for stationary processes, we have

1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

(

∂θh
∗
t (θ̄n)ǫ

2
t

σ2
t

− E
∂θh

∗
t (θ̄n)ǫ

2
t

σ2
t

)

∣

∣

∣

∣

∣

= OP (1).

Hence, since θ̂n → θ0 a.s., we obtain (16).
For J3,t and J4,t, by using the fact that ǫt is stationary and E(ǫ4t ) < ∞, it

holds that

(17)
max1≤k≤n ǫ

2
t√

n
= oP (1).
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Further, from Proposition 1 and Lemma A.2 of [17], we get

n
∑

t=1

sup
θ∈Θ

|ht(θ)− h∗t (θ)| <∞.

Thus, by (C4), we have
(18)

1√
n

max
1≤k≤n

4
∑

i=3

k
∑

t=1

∣

∣

∣

∣

Ji,t
ǫ2t
σ2
t

∣

∣

∣

∣

≤ 2

g

max1≤k≤n ǫ
2
t√

n

n
∑

t=1

sup
θ∈Θ

|ht(θ) − h∗t (θ)| = oP (1).

Then, combining (15)-(18), we get

1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

I1,t −
(

k

n

) n
∑

t=1

I1,t

∣

∣

∣

∣

∣

= oP (1).

Next, we deal with I2,t. Since σ2
t ≥ g > 0 and ht(θ̂n) ≥ g > 0 by (C4), to

show

1√
n

n
∑

t=1

|I2,t| = oP (1),(19)

it suffices to verify 1√
n

∑4
i=1

∑n
t=1 J

2
i,tǫ

2
t = oP (1). Similarly to proof of (15),

we can easily show that 1√
n

∑n
t=1 J

2
1,tǫ

2
t = oP (1). Further, due to Proposition

2 of [17], we can have E(supθ∈Θ |∂θh∗t (θ)|2) < ∞. This together with the fact

that
√
n(θ̂n − θ0) = OP (1) and (17) implies

1√
n

n
∑

t=1

J2
2,tǫ

2
t ≤ n(θ̂n− θ0)

T (θ̂n− θ0)
max1≤k≤n ǫ

2
t√

n

1

n

n
∑

t=1

sup
θ∈Θ

|∂θh∗t (θ)|2=oP (1).

Further, following essentially the same proof, we can easily obtain

1√
n

4
∑

i=3

n
∑

t=1

J2
i,tǫ

2
t = oP (1).

Hence, we have (19) and this implies

1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

I2,t −
(

k

n

) n
∑

t=1

I2,t

∣

∣

∣

∣

∣

= oP (1).

Concerning I3,t, we express

I3,t =
2(µ0−µ̂n)

T ∂µf(yt−1,...,yt−p;µ0)ǫt
σt

+
2(σ2

t−ht(θ̂n))(µ0−µ̂n)
T ∂µf(yt−1,...,yt−p;µ̄n)ǫt

σtht(θ̂n)

+
2(µ0−µ̂n)

T ∂µµf(yt−1,...,yt−p;µ̃n)(µ0−µ̂n)ǫt
σt

:= K1,t +K2,t +K3,t,

where µ̃n is an appropriate intermediate point between µ̄n and µ0.
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Owing to (DGP) and the invariance principle for stationary processes, we
have

1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

∂µf(yt−1, . . . , yt−p;µ0)ǫt
σt

−E∂µf(yt−1, . . . , yt−p;µ0)ǫt
σt

∣

∣

∣

∣

∣

=OP (1).

Since θ̂n converges to θ0, it holds that

1√
n

max
1≤k≤n

∣

∣

∣

∣

∣

k
∑

t=1

K1,t −
(

k

n

) n
∑

t=1

K1,t

∣

∣

∣

∣

∣

= oP (1).

Moreover, for ǫ > 0, by (DGP), the Markov’s inequality and the Minkowski’s
inequality,

P





1

n
√
n

n
∑

t=1

(

1 +

p
∑

i=1

|yt−i|
)2

> ǫ



 ≤
∑n

t=1

(

1 +
∑p

i=1E
1/2|yt−i|2

)2

ǫn
√
n

a.s.−→ 0.

(20)

This together with (C4), (N2)(i), (19) and the fact that
√
n (µ0 − µ̂n) = OP (1)

yields that

1√
n

n
∑

t=1

|K2,t|

≤ 2C
√
g

√
n |µ̂n − µ0|





1√
n

n
∑

t=1

ǫ2t

(

σ2
t − ht(θ̂n)

)2

σ2
t ht(θ̂n)





1/2
(

1

n
√
n

n
∑

t=1

(

1 +

p
∑

i=1

|yt−i|
)2
)1/2

= oP (1).

Thus, 1√
n
max1≤k≤n

∣

∣

∣

∑k
t=1K2,t −

(

k
n

)
∑n

t=1K2,t

∣

∣

∣ = oP (1).

For K3,t, by (DGP), (N3), (C4), (N2)(i) and (20), we have

1√
n

n
∑

t=1

|K3,t| ≤
2C
√
g
n |µ0 − µ̂n|2

(

1

n

n
∑

t=1

ǫ2t

)1/2(

1

n2

n
∑

t=1

(

1 +

p
∑

i=1

|yt−i|
)2)1/2

= oP (1),

which implies that 1√
n
max1≤k≤n

∣

∣

∣

∑k
t=1 I3,t −

(

k
n

)
∑n

t=1 I3,t

∣

∣

∣ = oP (1).

Finally, we verify that 1√
n

∑n
t=1 |I4,t| = oP (1). Similarly to (20), by (DGP),

(C4) and (N2)(i), we also have

1√
n

n
∑

t=1

|I4,t| ≤
C2n |µ̂n − µ0|2

g

1

n
√
n

n
∑

t=1

(

1 +

p
∑

i=1

|yt−i|
)2

= oP (1).(21)

This completes the proof. �
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Lemma 4. Suppose that the assumptions in Theorem 3 hold. Then, under H0,

τ̂2n =
1

n

n
∑

t=1

ǫ̂4t − (
1

n

n
∑

t=1

ǫ̂2t )
2 P−→ V ar(ǫ21).

Proof. By recalling the relationships in (8), we first verify that
∣

∣

∣

∣

∣

1

n

n
∑

t=1

ǫ̂2t −
1

n

n
∑

t=1

ǫ2t

∣

∣

∣

∣

∣

≤ 1

n

4
∑

i=1

n
∑

t=1

|Ii,t| = oP (1).(22)

Due to (C4), (N3), (19) and the Hölder’s inequality, we can have

1

n

n
∑

t=1

|I1,t| ≤
1
√
g

(

1

n

n
∑

t=1

ǫ2t

)1/2






1

n

n
∑

t=1

ǫ2t

(

σ2
t − ht(θ̂n)

)2

σ2
t







1/2

= oP (1).

(23)

On the other hand, by (T1), (C4), (DGP), (N3) and (N2)(i), we have

1

n

n
∑

t=1

|I3,t| ≤
2C2 |µ̂n − µ0|

g

(

1

n

n
∑

t=1

u20t

)1/2




1

n

n
∑

t=1

(

1 +

p
∑

i=1

|yt−i|
)2




1/2

(24)

= oP (1).

Further, 1√
n

∑n
t=1 |I2,t| = oP (1) and 1√

n

∑n
t=1 |I4,t| = oP (1) as we have in

Lemma 3. Hence, combining this with (23) and (24), we obtain (22), which in

turn implies 1
n

∑n
t=1 ǫ̂

2
t

P−→ E(ǫ21).
Next, we verify that

1

n

n
∑

t=1

(

ǫ̂2t − ǫ2t
)2 ≤ 4

n

4
∑

i=1

n
∑

t=1

|Ii,t|2 = oP (1).(25)

First, for |I1,t|2, by using the results of proof of Lemma 3, we can easily get

1

n

n
∑

t=1

|I1,t|2 ≤ 1

g2

(

1√
n

max
1≤t≤n

ǫ2t

)

4√
n

4
∑

i=1

n
∑

t=1

J2
i,tǫ

2
t = oP (1).(26)

Second, to deal with |I2,t|2, it suffices to verify

1

n

4
∑

i=1

n
∑

t=1

J4
i,tǫ

4
t = oP (1),(27)

where we have used (C4) and (13). Further, since ǫt is stationary and E
(

ǫ8t
)

<
∞ and (14), we have

1

n

n
∑

t=1

J4
1,tǫ

4
t ≤

(

1√
n

max
1≤t≤n

ǫ4t

)

(

σ2
1 − h1(θ0)

)4 1√
n

n
∑

t=1

κ4(t−1) = oP (1).
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Moreover, due to Proposition 2, 3 and Lemma A.2 of [17], we also have

1

n

n
∑

t=1

J4
2,tǫ

4
t ≤

(√
n
∣

∣

∣
θ̂n − θ0

∣

∣

∣

1√
n

max
1≤t≤n

|∂θh∗t (θ0)|
)4

1

n

n
∑

t=1

ǫ4t = oP (1),

and

1

n

4
∑

i=3

n
∑

t=1

J4
i,tǫ

4
t ≤ 2

(

max1≤k≤n ǫ
2
t√

n

)2 n
∑

t=1

sup
θ∈Θ

|ht(θ)− h∗t (θ)|
4
= oP (1).

Thus, the right hand side of (27) is oP (1).
Third, similarly to (24) and (21), it can be seen that

1

n

n
∑

t=1

|I3,t|2 ≤ 2C4 |µ̂n − µ0|2
g2

(

1

n

n
∑

t=1

u40t

)1/2




1

n

n
∑

t=1

(

1 +

p
∑

i=1

|yt−i|
)4




1/2

(28)

= oP (1),

and

1

n

n
∑

t=1

|I4,t|2 ≤
C4
(

n |µ0 − µ̂n|2
)2

g2
1

n

n
∑

t=1

(

1 +

p
∑

i=1

|yt−i|
)4

= oP (1).(29)

Thus, combining (26)–(29), we obtain (25).
Now, note that due to (25),

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ǫ̂4t −
1

n

n
∑

t=1

ǫ4t

∣

∣

∣

∣

∣

≤
(

1

n

n
∑

t=1

(

ǫ̂2t − ǫ2t
)2

)1/2(

1

n

n
∑

t=1

(

ǫ̂2t + ǫ2t
)2

)1/2

≤
(

1

n

n
∑

t=1

(

ǫ̂2t − ǫ2t
)2

)1/2(

2

n

n
∑

t=1

(

ǫ̂2t − ǫ2t
)2

+
8

n

n
∑

t=1

ǫ4t

)1/2

= oP (1)(oP (1) +OP (1)) = oP (1),

and thus, 1
n

∑n
t=1 ǫ̂

4
t

P−→ E(ǫ41). This together with (22) validates the lemma.
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