HOW THE PARAMETER ϵ INFLUENCE THE GROWTH RATES OF THE PARTIAL QUOTIENTS IN GCF_{ϵ} EXPANSIONS

TING ZHONG AND LUMING SHEN

ABSTRACT. For generalized continued fraction (GCF) with parameter $\epsilon(k)$, we consider the size of the set whose partial quotients increase rapidly, namely the set

$$E_{\epsilon}(\alpha):=\Big\{x\in(0,1]: k_{n+1}(x)\geq k_n(x)^{\alpha} \text{ for all } n\geq1\Big\},$$

where $\alpha > 1$. We in [6] have obtained the Hausdorff dimension of $E_{\epsilon}(\alpha)$ when $\epsilon(k)$ is constant or $\epsilon(k) \sim k^{\beta}$ for any $\beta \geq 1$. As its supplement, now we show that:

$$\dim_H E_{\epsilon}(\alpha) = \left\{ \begin{array}{ll} \frac{1}{\alpha}, & \text{when } -k^{\delta} \leq \epsilon(k) \leq k \text{ with } 0 \leq \delta < 1; \\ \frac{1}{\alpha+1}, & \text{when } -k-\rho < \epsilon(k) \leq -k \text{ with } 0 < \rho < 1; \\ \frac{1}{\alpha+2}, & \text{when } \epsilon(k) = -k-1 + \frac{1}{k}. \end{array} \right.$$

So the bigger the parameter function $\epsilon(k_n)$ is, the larger the size of $E_{\epsilon}(\alpha)$ becomes

1. Introduction

In 2003, F. Schweiger [2] introduced a new class of continued fractions with parameters, called generalized continued fractions (GCF_{ϵ}), which are induced by the map $T_{\epsilon}: (0,1] \to (0,1]$

(1.1)
$$T_{\epsilon}(x) := \frac{-1 + (k+1)x}{1 + \epsilon - k\epsilon x} \text{ for } x \in \left(\frac{1}{k+1}, \frac{1}{k}\right],$$

where the parameter $\epsilon : \mathbb{N} \to \mathbb{R}$ satisfies

(1.2)
$$\epsilon(k) + k + 1 > 0 \text{ for all } k > 1.$$

For any $x \in (0,1]$, its partial quotients $\{k_n\}_{n\geq 1}$ in the GCF_{\epsilon} expansion are defined as

$$k_1 = k_1(x) := \left\lfloor \frac{1}{x} \right\rfloor$$
, and $k_n = k_n(x) := k_1(T_{\epsilon}^{n-1}(x))$.

Received September 28, 2014; Revised October 28, 2014.

2010 Mathematics Subject Classification. 11K50, 28A80.

Key words and phrases. GCF_ϵ expansion, Engel series expansion, parameter function, growth rates, Hausdorff dimension.

By the algorithm (1.1), it follows [2] that

$$x = \frac{A_n + B_n T_{\epsilon}^n(x)}{C_n + D_n T_{\epsilon}^n(x)} \text{ for all } n \ge 1,$$

where the numbers A_n, B_n, C_n, D_n are given by the recursive relations

$$\left(\begin{array}{cc} C_0 & D_0 \\ A_0 & B_0 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

$$(1.3) \quad \begin{pmatrix} C_n & D_n \\ A_n & B_n \end{pmatrix} = \begin{pmatrix} C_{n-1} & D_{n-1} \\ A_{n-1} & B_{n-1} \end{pmatrix} \begin{pmatrix} k_n + 1 & k_n \epsilon(k_n) \\ 1 & 1 + \epsilon(k_n) \end{pmatrix}, \quad n \ge 1,$$

It is interesting to see how the parameter functions ϵ influence the growth rates of the partial quotients in GCF_{ϵ} . Under the condition (1.2), it is easy to see that for any $x \in [0,1)$, $k_{n+1}(x) \geq k_n(x)$. In [5], it was shown that when $-1 < \epsilon(k) \leq 1$ for all $k \geq 1$, for almost all $x \in [0,1)$

$$\lim_{n \to \infty} \frac{\log k_n(x)}{n} = 1.$$

As far as a general parameter ϵ is concerned, there is no general result concerning the growth rate of $k_n(x)$. However, it is believed that the bigger the parameter ϵ is, the faster the growth rate of $k_n(x)$ should be. In this paper, we consider this question from the view point of Hausdorff dimension. Namely, we consider the size of the following set:

$$E_{\epsilon}(\alpha):=\Big\{x\in[0,1): k_{n+1}(x)\geq k_n(x)^{\alpha} \text{ for all } n\geq1\Big\}.$$

In [6], Zhong and Tang showed that:

Theorem 1.1.

$$\dim_H E_{\epsilon}(\alpha) = \begin{cases} \frac{1}{\alpha}, & when \ \epsilon(k) \equiv \epsilon_0 \ (constant); \\ \frac{1}{\alpha - \beta + 1}, & when \ \epsilon(k) \sim k^{\beta} \ and \ \alpha \geq \beta \geq 1; \\ 1, & when \ \epsilon(k) \sim k^{\beta} \ and \ \alpha \leq \beta, \end{cases}$$

where \dim_H denotes the Hausdorff dimension.

In this paper, we will prove that:

Theorem 1.2.

$$\dim_H E_{\epsilon}(\alpha) = \begin{cases} \frac{1}{\alpha}, & when -k^{\delta} \leq \epsilon(k) \leq k \text{ with } 0 \leq \delta < 1; \\ \frac{1}{\alpha+1}, & when -k - \rho < \epsilon(k) \leq -k \text{ with } 0 < \rho < 1; \\ \frac{1}{\alpha+2}, & when \epsilon(k) = -k - 1 + \frac{1}{k}. \end{cases}$$

The above two theorems imply that

- (1) The bigger ϵ is, the larger the set in question. This gives some evidence that the bigger ϵ is, the faster the partial quotients k_n grows.
- (2) If and only if $-k^{\delta} \leq \epsilon(k) \leq ck$ (where $0 \leq \delta < 1$ and c is constant), the set $E_{\epsilon}(\alpha)$ is of Hausdorff dimension $\frac{1}{\alpha}$. This is the same with the Engel series expansion (see [4]).

(3) If $\epsilon = \epsilon(k,t) = -k^t$, then t = 1 is a jump discontinuity of $\dim_H E_{\epsilon}(\alpha)$. In fact, it follows from Theorem 1.2 that

$$\dim_H E_{\epsilon}(\alpha) = \begin{cases} \frac{1}{\alpha}, & \text{when } 0 \le t < 1; \\ \frac{1}{\alpha+1}, & \text{when } t = 1. \end{cases}$$

2. Preliminary

In this section, we present some simple facts about GCF_{ϵ} expansion for later use. The first lemma concerns the relationships between A_n, B_n, C_n, D_n which are recursively defined by (1.3).

Lemma 2.1 ([2, 3, 5]). For all $n \ge 1$ we have

- (i) $C_n=(k_n+1)C_{n-1}+D_{n-1}>0, C_0=1.$ (ii) $D_n=k_n\epsilon(k_n)C_{n-1}+(1+\epsilon(k_n))D_{n-1}, D_0=0, and D_n\geq 0$ when $\epsilon \geq 0; D_n < 0 \text{ when } \epsilon < 0.$
- (iii) $k_n C_n + D_n = (k_n C_{n-1} + D_{n-1})(k_n + 1 + \epsilon(k_n)) > 0.$ (iv) $B_n C_n A_n D_n = (B_N C_N A_N D_N) \prod_{i=N+1}^n (k_i + 1 + \epsilon(k_i)) > 0, \forall 0 \le n$

Now we define the cylinder set as follows. For any non-decreasing integer vector (k_1, \ldots, k_n) , define the *n*-th order cylinders as follows

$$B(k_1, \ldots, k_n) = \{x \in (0, 1] : k_j(x) = k_j, \forall 1 \le j \le n\}.$$

Then it is just the interval with the endpoints $L_n = \frac{A_n}{C_n}$ and $R_n = \frac{k_n A_n + B_n}{k_n C_n + D_n}$. As a consequence, the length of $B(k_1, \ldots, k_n)$ is

(2.1)
$$|B(k_1, k_2, \dots, k_n)| = \frac{B_n C_n - A_n D_n}{C_n (k_n C_n + D_n)}.$$

A further calculation shows $(k_{n+1} = k)$

$$(2.2) |B(k_1, k_2, \dots, k_n, k)| = \frac{B_n C_n - A_n D_n}{(kC_n + D_n)((k+1)C_n + D_n)}.$$

From now on until the end of this paper, we fix a point $x \in E_{\epsilon}(\alpha)$, and let $k_n = k_n(x)$ be the nth partial quotient of x. The numbers A_n, B_n, C_n, D_n be recursively defined by (1.3) for x.

The following simple inequalities will be used frequently. For easy reference, we list them as a lemma.

Lemma 2.2. When n is large enough (say $n \geq N_1$) we have,

- (a) $k_n k_{n-1} \ge \frac{k_n}{2}$. (b) $k_n k_n^{\delta} \ge \frac{k_n}{2}$ for $\delta < 1$. (c) $k_n^{\alpha} k_n \ge \frac{k_n^{\alpha}}{2}$.

Proof. Since $x \in E_{\epsilon}(\alpha)$ with $\alpha > 0$, and k_n is integer, it's obvious that

$$k_n \ge k_n^{\alpha} \Rightarrow k_n \ge k_{n-1} + 1 \Rightarrow k_n \ge n.$$

So when $n \ge \max\left\{2^{\frac{1}{\alpha-1}}, 2^{\frac{1}{1-\delta}}\right\}$, all of the inequalities (a), (b) and (c) hold. \square

The next result concerns the growth of $C_n = C_n(x)$.

Lemma 2.3. For all $n \ge N_1$ we have

$$C_n \ge \frac{k_n}{2} \frac{k_{n-1}}{2} \cdots \frac{k_{N_1+1}}{2} \frac{k_{N_1}}{2} C_{N_1-1}.$$

Proof. Since $k_i \geq k_{i-1}$ for all i > 1, so by using Lemma 2.1(iii) n times we get

$$k_n C_n + D_n \ge (k_1 C_0 + D_0) \prod_{i=1}^n (k_i + 1 + \epsilon(k_i)) > 0.$$

This gives

$$(2.3) D_n \ge -k_n C_n for all n \ge 1.$$

Then by Lemma 2.1(i) and Lemma 2.2(a), we get

$$(2.4) C_n \ge (k_n + 1)C_{n-1} - k_{n-1}C_{n-1}$$

$$\ge (k_n + 1 - k_{n-1})C_{n-1}$$

$$\ge \frac{k_n}{2}C_{n-1} \text{when } n \ge N_1.$$

Iterating this process enables us to conclude the result.

The second one concerns the growth of $k_n^{\alpha}C_n + D_n$.

Lemma 2.4. For any $n \geq N_1$ we have

$$k_n^{\alpha} C_n + D_n \ge \frac{k_n^{\alpha}}{2} \frac{k_{n-1}^{\alpha}}{2} \frac{k_{n-2}^{\alpha}}{2} \cdots \frac{k_{N_1}^{\alpha}}{2} C_{N_1}.$$

Proof. By (2.3) and Lemma 2.2(c), we get

(2.5)
$$k_n^{\alpha} C_n + D_n \ge (k_n^{\alpha} - k_n) C_n \ge \frac{k_n^{\alpha}}{2} C_n, \text{ when } n \ge N_1.$$

Using $k_n \geq k_{n-1}^{\alpha}$, the result (2.4) also gives that

(2.6)
$$C_{n} \geq \frac{k_{n}}{2} C_{n-1} \geq \frac{k_{n-1}^{\alpha}}{2} C_{n-1}$$
$$\geq \cdots$$
$$\geq \frac{k_{n-1}^{\alpha}}{2} \frac{k_{n-2}^{\alpha}}{2} \cdots \frac{k_{N_{1}}^{\alpha}}{2} C_{N_{1}}.$$

Substituting (2.6) into (2.5) to get the result.

The following corollary will be used for getting the upper bound of $\dim_H E_{\epsilon}(\alpha)$.

Corollary 2.5. Let

$$L_1 = \frac{3^{N_1-1}k_1k_2\cdots k_{N_1-1}}{C_{N_1}C_{N_1-1}}, L_2 = \frac{1}{C_{N_1}C_{N_1-1}} \text{ and } L_3 = \frac{2/(k_1k_2\cdots k_{N_1-1})}{C_{N_1}C_{N_1-1}},$$

where N_1 is given by Lemma 2.2. Then for any $n \geq N_1$ we hav

(1) If $\epsilon(k_n) \leq k_n$ for all $n \geq 1$, then

$$\frac{B_n C_n - A_n D_n}{C_n (k_n^{\alpha} C_n + D_n)} \le L_1 \cdot \frac{12}{k_n^{\alpha}} \frac{12}{k_{n-1}^{\alpha}} \cdots \frac{12}{k_{N_1}^{\alpha}};$$

(2) If $\epsilon(k_n) \leq -k_n$ for all $n \geq 1$, then

$$\frac{B_n C_n - A_n D_n}{C_n (k_n^{\alpha} C_n + D_n)} \le L_2 \cdot \frac{4}{k_n^{1+\alpha}} \frac{4}{k_{n-1}^{1+\alpha}} \cdots \frac{4}{k_{N_1}^{1+\alpha}};$$

(3) If $\epsilon(k_n) = -k_n - 1 + \frac{1}{k}$ for all $n \ge 1$, then $\frac{B_n C_n - A_n D_n}{C_n (k_n^{\alpha} C_n + D_n)} \le L_3 \cdot \frac{4}{k_n^{2+\alpha}} \frac{4}{k_{n-1}^{2+\alpha}} \cdots \frac{4}{k_{N}^{2+\alpha}}.$

Proof. From Lemma 2.1(iv) we can get immediate

$$B_nC_n - A_nD_n \le 3^nk_1k_2 \cdots k_n \qquad \text{when } \epsilon(k_n) \le k_n \text{ for all } n \ge 1;$$

$$B_nC_n - A_nD_n \le 1 \qquad \text{when } \epsilon(k_n) \le -k_n \text{ for all } n \ge 1;$$

$$B_nC_n - A_nD_n = \frac{1}{(k_1k_2 \cdots k_n)} \qquad \text{when } \epsilon(k_n) = -k_n - 1 + \frac{1}{k} \text{ for all } n \ge 1.$$

Combining these with Lemma 2.3 and the Lemma 2.4, we get the three results.

The following results will be used for getting the lower bound of $\dim_H E_{\epsilon}(\alpha)$

- **Lemma 2.6.** For any $n \geq N_1$ we have, $(1) \frac{(k_n^{\alpha} k_n)C_n}{k_n^{\alpha}C_n + D_n} \geq \frac{1}{4} \text{ if } \epsilon(k_n) \leq k_n,$ $(2) C_n(k_nC_n + D_n) \leq 2^{2n-2N_1+1}k_n(k_nk_{n-1} \cdots k_{N_1+1}C_{N_1})^2 \text{ if } \epsilon(k_n) \leq k_n,$ $(3) C_n(k_nC_n + D_n) \leq 2^{2n-2N_1}(k_nk_{n-1} \cdots k_{N_1+1}C_{N_1})^2 \text{ if } \epsilon(k_n) \leq -k_n.$

Proof. We first show $D_n \leq k_n C_n$ for $\epsilon(k_n) \leq k_n$. This is true for n = 1. Furthermore, suppose $D_{n-1} \leq k_{n-1}C_{n-1}$. Then by Lemma 2.1 and $\epsilon(k_{n-1})$ $\leq k_{n-1}$

$$D_n = k_n \epsilon(k_n) C_{n-1} + \epsilon(k_n) D_{n-1} + D_{n-1}$$

$$\leq k_n^2 C_{n-1} + k_n D_{n-1} + k_{n-1} C_{n-1}$$

$$\leq k_n^2 C_{n-1} + k_n D_{n-1} + k_n C_{n-1} = k_n C_n.$$

Thus when $\epsilon(k_n) \leq k_n$ we have

$$(2.7) k_n^{\alpha} C_n + D_n \le (k_n^{\alpha} + k_n) C_n \le 2k_n^{\alpha} C_n,$$

and by Lemma 2.1(i),

$$C_n = (k_n + 1)C_{n-1} + D_{n-1}$$

$$\leq (k_n + 1 + k_{n-1})C_{n-1} \leq 2k_n C_{n-1}.$$

By induction one has that, for any $1 \le N_1 < n$,

(2.8)
$$C_n \le 2^{n-N_1} (k_n k_{n-1} \cdots k_{N_1+1}) C_{N_1}.$$

From Lemma 2.2(c) we have $k_n^{\alpha} - k_n \ge \frac{k_n^{\alpha}}{2}$ when $n \ge N_1$. Combine this with (2.7) to get that

$$\frac{(k_n^{\alpha} - k_n)C_n}{k_n^{\alpha}C_n + D_n} \ge \frac{\frac{1}{2}k_n^{\alpha}C_n}{2k_n^{\alpha}C_n} = \frac{1}{4} \quad \text{when } n \ge N_1.$$

Combine (2.7) and (2.8), we get

$$C_n(k_nC_n + D_n) \le 2^{2n-2N_1+1}k_n(k_nk_{n-1}\cdots k_{N_1+1}C_{N_1})^2$$
 when $\epsilon(k_n) \le k_n$.

In case of $\epsilon(k_n) \leq -k_n$. By using Lemma 2.1(i),(ii), we get

$$D_n \le -k_n^2 C_{n-1} + (1 - k_n) D_{n-1}$$

= $-k_n C_n + k_n C_{n-1} + D_{n-1}$
= $-k_n C_n + C_n - C_{n-1}$.

It gives that

$$D_n + k_n C_n \le C_n$$
 when $\epsilon(k_n) \le -k_n$.

Thus by (2.8), we obtain

$$C_n(k_nC_n + D_n) \le C_n^2 \le 2^{2n-2N_1}(k_nk_{n-1}\cdots k_{N_1+1}C_{N_1})^2$$
 when $\epsilon(k_n) \le -k_n$.

Corollary 2.7. Let $L_4 = \frac{B_{N_1}C_{N_1} - A_{N_1}D_{N_1}}{2^{3-3N_1}(C_{N_1})^2}$, $L_5 = \frac{(1-\rho)^{N_1}}{2^{2-2N_1}(C_{N_1})^2}$ and $L_6 = \frac{1/(k_1k_2\cdots k_{N_1-1})}{2^{2-2N_1}(C_{N_1})^2}$ be three constants, where N_1 is given by Lemma 2.2. Then for any $n \geq N_1$ we have

(1) If $-k_n^{\delta} \le \epsilon(k_n) \le k_n$ with $0 \le \delta < 1$ for all $n \ge 1$, then

$$\frac{B_n C_n - A_n D_n}{C_n (k_n C_n + D_n)} \cdot \frac{(k_n^{\alpha} - k_n) C_n}{k_n^{\alpha} C_n + D_n} \ge L_4 \cdot \frac{1}{2^{3n} k_n (k_n k_{n-1} \cdots k_{N_1 + 1})};$$

(2) If $-k_n - \rho < \epsilon(k_n) \le -k_n$ for all $n \ge 1$, then

$$\frac{B_n C_n - A_n D_n}{C_n (k_n C_n + D_n)} \cdot \frac{(k_n^{\alpha} - k_n) C_n}{k_n^{\alpha} C_n + D_n} \ge L_5 \cdot \frac{(1 - \rho)^{n - N_1}}{2^{2n} (k_n k_{n-1} \cdots k_{N_1 + 1})^2};$$

(3) If $\epsilon(k_n) = -k_n - 1 + \frac{1}{k_n}$ for all $n \ge 1$, then

$$\frac{B_n C_n - A_n D_n}{C_n (k_n C_n + D_n)} \cdot \frac{(k_n^{\alpha} - k_n) C_n}{k_n^{\alpha} C_n + D_n} \ge L_6 \cdot \frac{1}{2^{2n} (k_n k_{n-1} \cdots k_{N_1+1})^3}.$$

Proof. By Lemma 2.1(iv) and Lemma 2.2(b), when $n \geq N_1$ we have,

(1) If $\epsilon(k_n) \geq -k_n^{\delta}$ with $0 \leq \delta < 1$, then

$$B_n C_n - A_n D_n \ge \frac{k_n}{2} \frac{k_{n-1}}{2} \cdots \frac{k_{N_1+1}}{2} (B_{N_1} C_{N_1} - A_{N_1} D_{N_1});$$

(2) If $-k - \rho < \epsilon(k_n) \le -k_n$ with $0 < \rho < 1$, then

$$B_nC_n - A_nD_n \ge (1-\rho)^n$$
;

(3) If $\epsilon(k_n) = -k_n - 1 + \frac{1}{k_n}$, then

$$B_n C_n - A_n D_n = \frac{1}{(k_1 k_2 \cdots k_n)}.$$

Combine these with Lemma 2.6 to get the above three results.

3. The Hausdorff dimension of $E_{\epsilon}(\alpha)$

The proof of Theorem 1.2 is divided into two parts: one for upper bound, the other for lower bound.

3.1. Upper bound

For any non-decreasing integer vector (k_1, k_2, \ldots, k_n) , define

$$I(k_1, k_2, \dots, k_n) = \bigcup_{k=k_n^{\infty}}^{\infty} cl\{x \in (0, 1) : k_i(x) = k_i, \ \forall 1 \le i \le n, \ k_{n+1}(x) = k\}.$$

Then it is clear that

(3.1)
$$E_{\epsilon}(\alpha) \subset \bigcap_{n=1}^{\infty} \bigcup_{\substack{k_{i+1} \geq k_{i}^{\alpha} \\ 1 \leq i \leq n-1}} I(k_{1}, k_{2}, \dots, k_{n}).$$

So by (2.2), one has

$$|I(k_1, k_2, \dots, k_n)| = \sum_{k=k_n^{\alpha}}^{\infty} \frac{B_n C_n - A_n D_n}{((k+1)C_n + D_n)(kC_n + D_n)}$$

$$= \frac{B_n C_n - A_n D_n}{C_n} \sum_{k=k_n^{\alpha}}^{\infty} \left(\frac{1}{kC_n + D_n} - \frac{1}{(k+1)C_n + D_n}\right)$$

$$= \frac{B_n C_n - A_n D_n}{C_n (k_n^{\alpha} C_n + D_n)}.$$
(3.2)

(i) Let's first consider the case of $-k^{\delta} \leq \epsilon(k) \leq k$ with $0 \leq \delta < 1$. Since the series $\sum_{k=1}^{\infty} \left(\frac{1}{k^{\alpha}}\right)^{s_1}$ is convergent for any $s_1 > 1/\alpha$, there exists an integer n_1 large enough such that for any $n \geq n_1$,

$$(3.3) \sum_{k=n}^{\infty} \left(\frac{12}{k^{\alpha}}\right)^{s_1} \le 1.$$

By (3.1), (3.2), (3.3) and Corollary 2.5(1), we find that for any $n \ge N = \max\{N_1, n_1\}$, the s_1 -dimensional Hausdorff measure of $E_{\epsilon}(\alpha)$ can be estimated as

$$\mathcal{H}^{s_{1}}(E_{\epsilon}(\alpha)) \leq \liminf_{n \to \infty} \sum_{\substack{k_{i+1} \geq k_{i}^{\alpha} \\ 1 \leq i \leq n-1}} |I(k_{1}, k_{2}, \dots, k_{n})|^{s_{1}}$$

$$\leq \liminf_{n \to \infty} \sum_{\substack{k_{i+1} \geq k_{i}^{\alpha} \\ 1 \leq i \leq N-1}} L_{1}(\alpha)^{s_{1}} \sum_{\substack{k_{N+1} \geq k_{N}^{\alpha} \\ 1 \leq i \leq N-1}} \left(\frac{12}{k_{N+1}^{\alpha}}\right)^{s_{1}} \cdots \sum_{\substack{k_{n} \geq k_{n-1}^{\alpha} \\ 1 \leq i \leq N-1}} \left(\frac{12}{k_{n-1}^{\alpha}}\right)^{s_{1}}$$

$$\leq \liminf_{n \to \infty} \sum_{\substack{k_{i+1} \geq k_{i}^{\alpha} \\ 1 \leq i \leq N-1}} L_{1}(\alpha)^{s_{1}} < \infty.$$

which gives that $\dim_H E_{\epsilon}(\alpha) \leq s_1$. Since $s_1 > \frac{1}{\alpha}$ is arbitrary, we get $\dim_H E_{\epsilon}(\alpha) \leq \frac{1}{\alpha}$.

- $\leq \frac{1}{\alpha}$. (ii) In case of $-k \rho < \epsilon(k) \leq -k$ with constant $0 < \rho < 1$. By using Corollary 2.5(2), we can prove, in the same way as we prove (i) that $\dim_H E_{\epsilon}(\alpha) \leq \frac{1}{\alpha+1}$.
- (iii) In case of $\epsilon(k) = -k 1 + \frac{1}{k}$. By using Corollary 2.5(3), we can also prove, in the same way as we prove (i) that $\dim_H E_{\epsilon}(\alpha) \leq \frac{1}{\alpha+2}$.

3.2. Lower bound

In order to estimate the lower bound, we recall the classical dimensional result concerning a specially defined Cantor set.

Lemma 3.1 (Falconer [1]). Let $I = E_0 \supset E_1 \supset E_2 \supset \cdots$ be a decreasing sequence of sets, with each E_n , a union of a finite number of disjoint closed intervals. If each interval of E_{n-1} contains at least m_n intervals of $E_n(n = 1, 2, \ldots)$ which are separated by gaps of at least η_n , where $0 < \eta_{n+1} < \eta_n$ for each n. Then the lower bound of the Hausdorff dimension of E can be given by the following inequality:

$$\dim_H \left(\cap_{n \ge 1} E_n \right) \ge \liminf_{n \to \infty} \frac{\log(m_1 m_2 \cdots m_{n-1})}{-\log(m_n \eta_n)}.$$

Let
$$f_n(\alpha) = 2^{\alpha + \alpha^2 + \dots + \alpha^n} = 2^{\frac{\alpha^{n+1} - \alpha}{\alpha - 1}}$$
. Define

$$(3.4) E(f) = \{ x \in (0,1) : f_n(\alpha) \le k_n(x) < 2f_n(\alpha) \ \forall n \ge 1 \}.$$

It is easy to see that, when $x \in E(f)$, we have

$$k_n(x)^{\alpha} < (2f_n(\alpha))^{\alpha} = f_{n+1}(\alpha) \le k_{n+1}(x).$$

This implies that

$$E(f) \subset E_{\epsilon}(\alpha)$$
.

For each $n \geq 1$, let $E_n(f)$ be the collection of cylinders

$$\bigcup_{j=k_{\alpha}}^{\infty} \{ B(k_1, \dots, k_n) : f_i(\alpha) \le k_i(x) < 2f_i(\alpha) \ \forall \ 1 \le i \le n, \ k_{n+1}(x) = j \}.$$

Then

$$E(f) = \bigcap_{n=1}^{\infty} E_n(f)$$

and E(f) fulfills the construction of the Cantor set in Lemma 3.1. Now we specify the integers $\{m_n, n \geq 1\}$ and the real numbers $\{\eta_n, n \geq 1\}$.

Due to the definition of E_n , each interval of E_{n-1} contains $m_n = f_n(\alpha) = 2^{\frac{\alpha^{n+1}-\alpha}{\alpha-1}}$ intervals of E_n , and

$$(3.5) m_1 m_2 \cdots m_{n-1} \ge 2^{\sum_{i=1}^{n-1} \frac{\alpha^{i+1} - \alpha}{\alpha - 1}} = 2^{\frac{\alpha^{n+1} - n\alpha^2 + (n-1)\alpha}{(\alpha - 1)^2}}$$

In addition, any two of intervals in E_n are separated by at least an interval $J_n(f)$ defined by

$$\bigcup_{j=k_n}^{k_n^{\alpha}-1} \{ B(k_1, \dots, k_n) : f_i(\alpha) \le k_i(x) < 2f_i(\alpha), \ \forall \ 1 \le i \le n, \ k_{n+1}(x) = j \}.$$

From (2.2) we get

$$|J_n(f)| = \sum_{j=k_n}^{k_n^{\alpha}-1} \frac{B_n C_n - A_n D_n}{((j+1)C_n + D_n)(jC_n + D_n)}$$

$$= \frac{B_n C_n - A_n D_n}{C_n} \sum_{j=k_n}^{k_n^{\alpha}-1} \left(\frac{1}{jC_n + D_n} - \frac{1}{(j+1)C_n + D_n}\right)$$

$$= \frac{B_n C_n - A_n D_n}{C_n} \left(\frac{1}{k_n C_n + D_n} - \frac{1}{k_n^{\alpha} C_n + D_n}\right)$$

$$= \frac{B_n C_n - A_n D_n}{C_n (k_n C_n + D_n)} \cdot \frac{(k_n^{\alpha} - k_n) C_n}{(k_n^{\alpha} C_n + D_n)}.$$
(3.6)

Thus and by Corollary 2.7(1), we get when $-k^{\delta} \leq \epsilon(k) \leq k$ with $0 < \delta < 1$,

(3.7)
$$|J_n(f)| \ge L_4 \cdot \frac{1}{2^{3n} k_n (k_n k_{n-1} \cdots k_{N+1})};$$

And when $-k - \rho < \epsilon(k) \le -k$ with $0 < \rho < 1$, by Corollary 2.7(2), we get

$$|J_n(f)| \ge L_5 \cdot \frac{(1-\rho)^{n-N_1}}{2^{2n}(k_n k_{n-1} \cdots k_{N+1})^2}.$$

When $\epsilon(k) = -k - 1 + \frac{1}{k}$, by Corollary 2.7(3), we get

$$(3.9) |J_n(f)| \ge L_6 \cdot \frac{1}{2^{2n} (k_n k_{n-1} \cdots k_{N+1})^3}.$$

In view of (3.4), the partial quotients k_n satisfying that $2^{\frac{\alpha^{n+1}-\alpha}{\alpha-1}} \leq k_n \leq$ $2^{\frac{\alpha^{n+1}-1}{\alpha-1}} \text{ for all } n \geq 1. \text{ Therefore,}$ (i) when $-k^{\delta} \leq \epsilon(k) \leq k \text{ with } 0 < \delta < 1,$

$$|J_n(f)| \ge L_4 \left(2^{3n} \cdot 2^{\frac{\alpha^{n+1}-1}{\alpha-1}} \cdot \left(2^{\sum_{i=N+1}^n \frac{\alpha^{i+1}-1}{\alpha-1}} \right) \right)^{-1}$$

$$\ge L_4 \left(2^{3n} \cdot 2^{\frac{\alpha^{n+1}-1}{\alpha-1}} \cdot \left(2^{\frac{\alpha^{n+2}-\alpha^{N+2}-(n-N)(\alpha-1)}{(\alpha-1)^2}} \right) \right)^{-1} =: \eta_n.$$

(ii) when $-k - \rho < \epsilon(k) \le -k$ with $0 < \rho < 1$,

$$|J_n(f)| \ge L_5 \cdot (1-\rho)^{n-N_1} \left(2^{2n} \cdot \left(2^{\sum_{i=N+1}^n \frac{\alpha^{i+1}-1}{\alpha-1}} \right)^2 \right)^{-1}$$

$$\ge L_5 \cdot (1-\rho)^{n-N_1} \left(2^{2n} \cdot \left(2^{\frac{\alpha^{n+2}-\alpha^{N+2}-(n-N)(\alpha-1)}{(\alpha-1)^2}} \right)^2 \right)^{-1} =: \eta'_n.$$

(iii) when $\epsilon(k) = -k - 1 + \frac{1}{k}$,

$$|J_n(f)| \ge L_6 \left(2^{2n} \cdot \left(2^{\sum_{i=N+1}^n \frac{\alpha^{i+1} - 1}{\alpha - 1}} \right)^3 \right)^{-1}$$

$$\ge L_6 \left(2^{2n} \cdot \left(2^{\frac{\alpha^{n+2} - \alpha^{N+2} - (n-N)(\alpha - 1)}{(\alpha - 1)^2}} \right)^3 \right)^{-1} =: \eta_n''.$$

As a result of (3.5), in the case (i), we get

$$\liminf_{n \to \infty} \frac{\log_2(m_1 \cdots m_{n-1})}{\alpha^{n+1}} \ge \frac{1}{(\alpha - 1)^2},$$

$$\lim_{n \to \infty} \frac{-\log_2 m_n \eta_n}{\alpha^{n+1}} = \frac{\alpha}{(\alpha - 1)^2}.$$

Combining this with Lemma 3.1, we get when $-k^{\delta} \leq \epsilon(k) \leq k$ with $0 < \delta < 1$ 1,

$$\dim_H E_{\epsilon}(\alpha) \ge \dim_H E(f) \ge \frac{1}{\alpha}$$
.

Similarly, when $-k - \rho < \epsilon(k) \le -k$ with $0 < \rho < 1$ (case ii),

$$\dim_H E_{\epsilon}(\alpha) \ge \frac{1}{\alpha+1}.$$

And when $\epsilon(k) = -k - 1 - \frac{1}{k}$ (case iii),

$$\dim_H E_{\epsilon}(\alpha) \ge \frac{1}{\alpha+2}.$$

Acknowledgement. This work is supported by the national natural science foundation of China (No.11361025) and Hunan Agricultural University Talent Fund (14cpt03).

References

- [1] K. J. Falconer, Fractal Geometry, Mathematical Foundations and Application, Wiley, 1990.
- [2] F. Schweiger, Continued fraction with increasing digits, Oster Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II **212** (2003), 69–77.
- [3] L. M. Shen and Y. Zhou, Some metric properties on the GCF fraction expansion, J. Number Theory 130 (2010), no. 1, 1–9.
- [4] J. Wu, How many points have the same Engel and Sylvester expansions, J. Number Theory 103 (2003), no. 1, 16–26.
- [5] T. Zhong, Metrical properties for a class of continued fractions with increasing digits, J. Number Theory 128 (2008), no. 6, 1506-1515.
- [6] T. Zhong and L. Tang, The growth rate of the partial quotients in a class of continued fractions with parameters, J. Number Theory 145 (2014), 388–401.

Ting Zhong

DEPARTMENT OF MATHEMATICS

JISHOU UNIVERSITY

Zhangjiajie, 427000, P. R. China

 $E ext{-}mail\ address: zhongtingjsu@aliyun.com}$

LUMING SHEN SCIENCE COLLEGE

Hunan Agricultural University Changsha, 410128, P. R. China

E-mail address: lum_s@126.com