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HOW THE PARAMETER ¢ INFLUENCE THE GROWTH
RATES OF THE PARTIAL QUOTIENTS IN GCF,
EXPANSIONS

TING ZHONG AND LUMING SHEN

ABSTRACT. For generalized continued fraction (GCF) with parameter
€(k), we consider the size of the set whose partial quotients increase
rapidly, namely the set

Ec(a) := {J: € (0,1] : knt1(x) > kn(z)® for all n > 1},

where a > 1. We in [6] have obtained the Hausdorff dimension of E.(«)
when €(k) is constant or (k) ~ k# for any 8 > 1. As its supplement, now
we show that:

L when —k% < e(k) < k with 0 < 6 < 1;
dimy Ec(a) = O%Tl when —k — p < e(k) < —k with 0 < p < 1;
ais> when e(k) = —k—1+ 1.

So the bigger the parameter function €(ky) is, the larger the size of E¢(a)
becomes.

1. Introduction

In 2003, F. Schweiger [2] introduced a new class of continued fractions with
parameters, called generalized continued fractions (GCF.), which are induced
by the map T : (0,1] — (0, 1]

1+ (k+ 1)z 11
1.1 71E L S A — ],
(1.1) (z) 14+ €— kex Orxe(kJrl k}
where the parameter € : N — R satisfies
(1.2) e(k)+k+1>0 forall k> 1.

For any x € (0, 1], its partial quotients {k;,}»>1 in the GCF expansion are
defined as

k1 = ki(x) := {éJ, and ky, = ky(2) == ki (T} (2)).
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By the algorithm (1.1), it follows [2] that
A + B, T (x)

r=--——————

Cy + D, T (x)

where the numbers A,,, B,,, Cy, D,, are given by the recursive relations

Co Do\ (10
Ao By ) o 1)

Cn Dn Cnfl anl kn + 1 kne(kn)
. = >
(13) ( A, B ) ( Ap-1 Bn-i ) ( 1 ltek) )0 2D
It is interesting to see how the parameter functions e influence the growth
rates of the partial quotients in GCF.. Under the condition (1.2), it is easy to

see that for any x € [0,1), kpt1(x) > kn(z). In [5], it was shown that when
—1 < e(k) <1forall k>1, for almost all z € [0,1)

lim 108Fn(®) _

n—00 n

for all n > 1,

As far as a general parameter € is concerned, there is no general result con-
cerning the growth rate of k,(z). However, it is believed that the bigger the
parameter € is, the faster the growth rate of k,(z) should be. In this paper,
we consider this question from the view point of Hausdorff dimension. Namely,
we consider the size of the following set:

E (a) := {x €[0,1) : kny1(x) > kp(x)® for all n > 1}.
In [6], Zhong and Tang showed that:

Theorem 1.1.

1 when e(k) = € (constant);
dimy F.(a) = a—é—i—l’ when e(k) ~ k% and o > B> 1;

1, when €(k) ~ kP and o < B,

where dimg denotes the Hausdorff dimension.

In this paper, we will prove that:

Theorem 1.2.
é, when —k° < e(k) <k with 0 < < 1;
dimy B (o) ={ =5, when —k —p <e(k) < —k with0 < p < 1;

i3 when e(k) =~k -1+ 3.

The above two theorems imply that

(1) The bigger € is, the larger the set in question. This gives some evidence
that the bigger € is, the faster the partial quotients k,, grows.

(2) If and only if —k° < €(k) < ck (where 0 < § < 1 and ¢ is constant), the
set F.(«a) is of Hausdorff dimension é This is the same with the Engel series
expansion (see [4]).
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(3) If € = e(k,t) = —k', then t = 1 is a jump discontinuity of dimpy F. ().
In fact, it follows from Theorem 1.2 that

when 0 <t < 1;

1
dimH E€(a) = { ol When =1,

1
a+1?

2. Preliminary

In this section, we present some simple facts about GCF. expansion for later
use. The first lemma concerns the relationships between A,,, B;,, Cy,, D,, which
are recursively defined by (1.3).

Lemma 2.1 (]2, 3, 5]). For all n > 1 we have
(i) C, = (k/’n +1)Cph1+Dp—1>0,Co=1.
(ii)) D, = kne(kn)Cn-1 + (1 4+ €(kn))Dp—1, Do = 0, and D,, > 0 when
€>0;D, <0 when e <0.
(i) k,Cpn + Dy = (knCpn-1+ Dp—1)(kn + 1+ €(kn)) > 0.
(IV) B,C,—A,D, = (BNCN — ANDN) H?:NJrl(k/’i +1+ 6(]%)) >0,V0<
N < n.

Now we define the cylinder set as follows. For any non-decreasing integer
vector (ki,...,ky), define the n-th order cylinders as follows

B(ki,...,ky) ={z € (0,1] : k;(x) = k;,V1 < j <n}.

Then it is just the interval with the endpoints L,, = ‘é—: and R, = m.

As a consequence, the length of B(ki,...,k,) is
B,C, — A,D,

2.1 B(ki, ko, ... kp)| = =—————.
( ) | ( 1, 2, ) )| Cn(kncn+Dn)

A further calculation shows (k41 = k)
B,C, — A,D,
(kCp + Dp)((k +1)Cp, + D)

(2.2) \B(ki, ko, ... Eon, )| =

From now on until the end of this paper, we fix a point 2 € E(a), and let
kn = kn(x) be the nth partial quotient of x. The numbers A,,, By, C,, D,, be
recursively defined by (1.3) for x.

The following simple inequalities will be used frequently. For easy reference,
we list them as a lemma.

Lemma 2.2. When n is large enough (say n > Ny) we have,
(a) kp — k1 > ko

(b) kn — kS > E2 for 5 < 1.
a ko
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Proof. Since x € E.(«) with a > 0, and k,, is integer, it’s obvious that
ko > kS = ki > koot + 1= ky > 1.
So when n > max {Qﬁ,Qli_& }, all of the inequalities (a), (b) and (c) hold. [
The next result concerns the growth of C), = Cy, ().

Lemma 2.3. For all n > Ny we have

kn knfl kN +1 kN
Cnz5 =3 Ty g Omer

Proof. Since k; > k;—1 for all i > 1, so by using Lemma 2.1(iii) n times we get

n

knCr + Dy > (k1Co + Do) [ [ (ki + 1+ €(ks)) > 0.
i=1

This gives

(2.3) D, > —k,C, foralln>1.
Then by Lemma 2.1(i) and Lemma 2.2(a), we get

Cpn > (kn+1)Cpo1 — kn—1Cpn_1
> (kn+1—Fkp_1)Crns
kn

(2.4) > - Cn-1 when n > Nj.

Iterating this process enables us to conclude the result. ([

The second one concerns the growth of kg C),, + D,,.

Lemma 2.4. For any n > N; we have

Proof. By (2.3) and Lemma 2.2(c), we get

k
(2.5) kyCp + Dy > (ki — kp)Cp > ?"Cn, when n > Nj.

Using ky, > k2, the result (2.4) also gives that

n—1»
kn ka*l
Cp>—=2Cphq > "—Cp
z5 12— 1
> ...
knikn o kY
2.6 > I no2 . (O,
Substituting (2.6) into (2.5) to get the result. O

The following corollary will be used for getting the upper bound of
dimy E ().
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Corollary 2.5. Let

. 3N1711€1]€2 cee kN1,1

L L 2/ (kuks - kny—1)

1
Cn,Cny—1 T CON Oy Cn,Cny—1 ’
where N1 is given by Lemma 2.2. Then for any n > Ny we have
(1) If e(kpn) < ky, for alln > 1, then
B, C, — A, D, 12 12 12
CulkaCu+ D) = " kaki, kR,
(2) If e(kpn) < —ky, for alln > 1, then
B,C, — A,D, 4 4 4
Co(k3Cn + D) = 72 TR R
(3) If €(kn) = —kyn — 1+ ¢ for alln > 1, then
B,C, — A,D, T 4 4 4
Cn(kaCp+ Dy) = 72

and L3 =

2%a 1.24a 124«
n kn—l kNl

Proof. From Lemma 2.1(iv) we can get immediate
B,C, — A,D, <3"k1ks---ky, when €(ky,) < ky, for all n > 1;
B,C,—-A,D, <1 when e(k,) < —k, for all n > 1;
1
(kika - kn)

Combining these with Lemma 2.3 and the Lemma 2.4, we get the three results.
O

1
B,C, —A,D, = when e(ky,) = -k, — 1+ P for all n > 1.

The following results will be used for getting the lower bound of dimy E.(«)

Lemma 2.6. For any n > Ni we have,
ES —kn)Chn .
(1) (kgcn,-i-)Dn > % if €(kn) < ky,
(2) Cp(knCy + D) <220 2NH 1 (kpkp 1 kn, 010N, )? if €(kn)
S —

(3) Cr(knCh + Dp) < 227Nt (ky k1 -+ knys1Cn, )2 if €(kn)

Proof. We first show D,, < k,,C,, for €(k,) < k,,. This is true for n =
Furthermore, suppose D,,—1 < k,_1Cy,—1. Then by Lemma 2.1 and e(k,,—1)
S kn—la

S k’nv
kn,.
1.

Dy, = kne(kn)Crno1 + €(kn)Dpn—1+ Dn—1
<k2Cp_1+knDy1+ Ky 1Cnq
<k2Ch_1 +knDp1 4+ EkpnCry = knCy.

Thus when €(k,) < k, we have
(2.7) kyCp + Dy < (ki + kn)Cp, < 2k5Cy,
and by Lemma 2.1(i),

Cp=(kn+1)Cp_1+ Dp_1
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<(kn+14+kn-1)Cra
< ancn—l-

By induction one has that, for any 1 < N; < n,

(2.8) Cp <2 M(kyky1---kn,41)Cn, -

From Lemma 2.2(c) we have k% — k,, > % when n > N;. Combine this
with (2.7) to get that

(ky —kn)Cn _ 3k3Cn _ 1
kaC, + D, ~ 2kaC, 4
Combine (2.7) and (2.8), we get

when n > Nj.

Ch(knCr + Dy) < 222Nk (Bpkn_1 -+ kn,+1Cn,)? when e(ky) < k.
In case of e(k,) < —k,. By using Lemma 2.1(i),(ii), we get
D, < —k2Cp 1+ (1 —ky)Dyy
= —knCpn +knCpo1+ D1
=—k,Cp+Cp — Cpq.
It gives that
D, + k,C, <C, when e(k,) < —k,.
Thus by (2.8), we obtain
Cp(knCr 4+ Dy) < C2 <22 2N1(fp k1 kn,+1CN,)? when e(ky,) < —k,.
(]

BNn,;CN;—AN; DN,
25-3N1 (Cn, )2

Corollary 2.7. Let Ly =
1/(k1k2--kny—1)
22—2N7 (Cny )2

any n > Ny we have
(1) If =k < e(kyp) < kp with 0 <6 < 1 for all n > 1, then
B,C, — Ap,D, (kS —k,)Cyp S 1 _
Cn(knCn + D) k2Cp + Dy, = 0 20k (kpkn—1 - knys1)

(2) If =k, — p < e(kp) < —ky, for alln > 1, then
_ o _ n—N1p

CoknCn + D) k2Cn + Dy = 0 220 (kpknor - kris1)?
(3) If e(kp) = =k, — 1+ % for allm > 1, then

Ly = el and L =

22-2N1(Cy

be three constants, where Ny is given by Lemma 2.2. Then for

BnCn - AnDn (/{Z% - kn)Cn > T 1
Cn(knCn+ D) k2Cp+ Dy, = % 222 (kpkp_y - kny11)®
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Proof. By Lemma 2.1(iv) and Lemma 2.2(b), when n > N; we have,
(1) If €(kyn) > —kS with 0 < 4§ < 1, then

kn ko1 kni
BnCy — ApD,, > 2 L BN
Cn 2 2 2 (

(2) If =k — p < e(ky) < —ky, with 0 < p < 1, then
(3) If e(kp) = —kn — 1+ é, then

Bn,Cn, — AN, D, );

B 1
(krky - kn)
Combine these with Lemma 2.6 to get the above three results. (|

BnCn - AnDn

3. The Hausdorff dimension of E.(«)

The proof of Theorem 1.2 is divided into two parts: one for upper bound,
the other for lower bound.

3.1. Upper bound

For any non-decreasing integer vector (ki,ka, ..., k), define
Ik koveo k) = | ez € (0,1): k(@) = ki, V1 <0 <n, knsa(2) = K},
k=kg
Then it is clear that
(31) EE(a) C ﬂ U (klakQa"'vkn)'
n=1 <Z ISZ ‘;‘

So by (2.2), one has

o0

B,C, — A, D,

I(ky, ko, ... kp)| =
(k1 k2, k)l kzzka((’f+1)0"+D")(kC”+D”)
Bl 5 () D7)
— c. - kC, + D, (k;+1)Cn+Dn
B,C, — A, D,

(32) T Cu(kgCr+ Dy

(i) Let’s first consider the case of —k% < e(k) < k with 0 < § < 1.
s1

k%) is convergent for any s; > 1/«, there exists

an integer n; large enough such that for any n > n;,

(3.3) i (;—3) <1.

=n

Since the series >,
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By (3.1), (3.2), (3.3) and Corollary 2.5(1), we find that for any n > N =
max{ Ny, n; }, the s;-dimensional Hausdorff measure of E.(«) can be estimated
as

H* (Ee(a))
< hnnl)gf Z |I(klak27--'7kn)|51
kit1 > k§

1<i<n-—1

IN

it S ner Y (g5) 2 ()

kig1 > kS Enii>ke NHL ko >k
1<i<N-1

< liminf E Li()® < o0.
n—oo
kig1 > k§
1<i<N<-1

which gives that dimy F.(a) < s7. Since 51 > é is arbitrary, we get dimpy E.(«)
<1
-

ii) In case of —k — p < €(k) < —k with constant 0 < p < 1. By us-
ing Corollary 2.5(2), we can prove, in the same way as we prove (i) that
dimy E.(a) < o%i-l

(iii) In case of e(k) = —k — 1 + 1. By using Corollary 2.5(3), we can also
prove, in the same way as we prove (i) that dimy F.(a) < o%ﬂ
3.2. Lower bound

In order to estimate the lower bound, we recall the classical dimensional
result concerning a specially defined Cantor set.

Lemma 3.1 (Falconer [1]). Let I = Ey D E; D E; D --- be a decreasing
sequence of sets, with each E,, a union of a finite number of disjoint closed
intervals. If each interval of E,_1 contains at least m,, intervals of En(n =
1,2,...) which are separated by gaps of at least 1y, where 0 < Npt1 < Ny for
each n. Then the lower bound of the Hausdorff dimension of E can be given
by the following inequality:

log(mima -+ Myp_1)

dimH (ﬂn>1 En) Z lim inf
B n—roo — log(mumny)

Let fo(a) = 20+0*++a" — 95 Defing
(3.4) E(f)={z€(0,1): fo(a) <ky(z) <2fn(a) Vn>1}.
It is easy to see that, when x € E(f), we have

En(2)® < (2fn()® = fry1(a) < kpga().
This implies that

E(f) C Ec(a).
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For each n > 1, let E,(f) be the collection of cylinders

U (B, kn) s fila) < ki) <2fi(@) V1< i <n, kpaa(2) =5}

i=hg

Then

and E(f) fulfills the construction of the Cantor set in Lemma 3.1. Now we
specify the integers {m,,n > 1} and the real numbers {n,,n > 1}.

Due to the definition of E,, each interval of E,_; contains m,, = f,(«a) =
antl_o
27 «-T intervals of E,, and

n—1 ottl_q o™l na?4(n—1a
(3.5) mima - My_q1 > 2%i=1  a-1 =2 (a—1)2

In addition, any two of intervals in F, are separated by at least an interval
Jn(f) defined by

kX —1

U (B, kn): fila) < ki) <2fi@), V1 <i<n, knpa(z) = j}.
j=kn

From (2.2) we get

kn_l Bncn *AnDn

[Jn(f)] = jZ ((j+1)Cn + Dy)(§Cy + D)

=kn
ko —1

B.Cy — AuD, 1 1
N Ch, j;; (jcn+Dn_(j+1)Cn+Dn)

N C, k.Cpn + D,  koC,+ D,
BuCo — AuDy (k% — k)Ch
(3.6) = . .
Cpn(knCp + Dy)  (k2Cp + Dy,)
Thus and by Corollary 2.7(1), we get when —k° < e(k) < k with 0 < < 1,
1
3.7 Jo (A > La - :
( ) | (f)l = 23nkn(knkn71 T kNJrl)
And when —k — p < e(k) < —k with 0 < p < 1, by Corollary 2.7(2), we get
o (A=pr™
2 (k)
When €(k) = —k — 1+ 1, by Corollary 2.7(3), we get
1
22n(knkn—1 o kN—i—l)s '

(3-8) [In(f)l = L

(3.9) |[In(F)] = Le -
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antl_qo
In view of (3.4), the partial quotients k, satisfying that 2" =1 < k,, <
a"+1—
2°%=1" for all n > 1. Therefore,
(i) when —k? < e(k) <k with 0 < < 1,

a"+1—

) —1
n altl_
2 Ly (202750 L @B *) )

antl_y ant2_oN+2_(n_N)(a—1) -1
= 1.

> Ly <23n 227 et (2 (a-1)?

(ii) when —k — p < e(k) < =k with 0 < p < 1,

; -1
n it
|, (f)| > Ls- (1 — p)n—N1 (22n ) (2Zi:N+1 (111)2)

a2 _oN+2_(n_N)(a-1) 9 -1
> Ls-(1-p)"™M (22” (2 R ) ) =),
1
(iii) when (k) = =k — 1+ ¢,

; 1
" witl_
|Jn(f)] > Le (22" . (QZi:NH (111)3)

"

ant2_oN+2_(n_N)(a—1) 3 -1
) =

> Lg (22” (2 @12

As a result of (3.5), in the case (i), we get
.. logg(my - mp_q) 1
T e o

L —logman, __a
n—o00 ant1 (Oé — 1)2 ’

Combining this with Lemma 3.1, we get when —kS < e(k) <kwith0<d<

dimyg E.(a) > dimpy E(f) >

—~ 2~

Similarly, when —k — p < e(k) < -k with0 < p <1
1
a+1’

case ii),

dimy F.(a) >

And when €(k) = —k — 1 — 1 (case iii),

1
dimpy F(a) > .
imyg E(a) > P
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