DOI QR코드

DOI QR Code

On the Development of Differential Geometry from mid 19C to early 20C by Christoffel, Ricci and Levi-Civita

크리스토펠, 리치, 레비-치비타에 의한 19세기 중반부터 20세기 초반까지 미분기하학의 발전

  • Received : 2015.03.27
  • Accepted : 2015.04.21
  • Published : 2015.04.30

Abstract

Contemporary differential geometry owes much to the theory of connections on the bundles over manifolds. In this paper, following the work of Gauss on surfaces in 3 dimensional space and the work of Riemann on the curvature tensors on general n dimensional Riemannian manifolds, we will investigate how differential geometry had been developed from mid 19th century to early 20th century through lives and mathematical works of Christoffel, Ricci-Curbastro and Levi-Civita. Christoffel coined the Christoffel symbol and Ricci used the Christoffel symbol to define the notion of covariant derivative. Levi-Civita completed the theory of absolute differential calculus with Ricci and discovered geometric meaning of covariant derivative as parallel transport.

Keywords

References

  1. D. Bao, S. S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.
  2. L. Bianchi, Lezioni di geometria differenziale, Spoerri, 1894.
  3. P. Butzer, An outline of the life and work of E. B. Christoffel, Historia Mathematica 8 (1981), 243-276. https://doi.org/10.1016/0315-0860(81)90068-9
  4. S. S. Chern, Local Equivalence and Euclidean Connections in Finsler Spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95-121.
  5. S. S. Chern, On Finsler Geometry, C. R. Acad. Sci. Paris Ser. I Math. 314 (1992), 757-761.
  6. Cho M., History and Development of Sphere Theorems in Riemannian Geometry, The Korean Journal for History of Mathematics 24(3) (2011), 23-35. 조민식, 리만기하학에서 구면정리의 발전과 역사, 한국수학사학회지 24(3) (2011), 23-35.
  7. E. Christoffel, Ueber die Transformation der homogenen Differentialausdrucke zweiten Grades, Jour. fur die reine und angewandte Mathematik 70 (1869), 46-70.
  8. A. Einstein, Die Grundlage der allgemeinen Relativitatstheorie, Annalen der Physik 49 (1916), 769-822.
  9. J. Faran, The Equivalence Problem for Complex Finsler Hamiltonians, Cont. Math. 196 (1996), 133-143. https://doi.org/10.1090/conm/196/02439
  10. C. F. Gauss, Disquisitiones generales circa superficies curvas, Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores 6 (1827), 99-146.
  11. M. Giovanelli, The forgotten tradition: how the logical empiricists missed the philosophical significance of the work of Riemann, Christoffel and Ricci, Erkenntnis 78 (2013), 1219-1257. https://doi.org/10.1007/s10670-012-9407-2
  12. A. Guerraggio, P. Nastasi, Italian Mathematics between the two World Wars, Birkhauser, 2005.
  13. Han G., A Historical Note on Riemann's life and Achievement, The Korean Journal for History of Mathematics 24(2) (2011), 61-70. 한길준, 리이만의 생애와 그의 업적에 대한 역사적 소고, 한국수학사학회지 24(2) (2011), 61-70.
  14. Kim Y.-W. and Jin Y., elie Cartan and Riemannian Geometry of 20th Century, The Korean Journal for History of Mathematics 22(2) (2009), 13-26. 김영욱, Yuzi Jin, 엘리 카르탕과 20세기 리만기하학, 한국수학사학회지 22(2) (2009), 13-26.
  15. D. Laugwitz, Bernhard Riemann 1826-1866: turning points in the conception of Mathematics, Birkhauser, 1997.
  16. T. Levi-Civita, Sulle trasformazioni delle equazioni Dinamiche, Annali di Matematica 24 (1896), 255-300. https://doi.org/10.1007/BF02419530
  17. T. Levi-Civita, G. Ricci, Methodes de calcul differentiel absolu et leurs applications, Math. Ann. 54 (1900), 125-201. https://doi.org/10.1007/BF01454201
  18. T. Levi-Civita, Nozione di parallelismo in una varieta qualunque et conseguente specificazione geometrica della curvatura Riemanniana, Rendiconti del Circolo Matematico di Palermo 42 (1917), 173-205.
  19. T. Levi-Civita, The Absolute Differential Calculus, Dover, 1977.
  20. P. Nastasi, R. Tazzioli, Toward a scientific and personal biography of Tullio Levi-Civita (1873-1941), Historia Mathematica 32 (2005), 203-236. https://doi.org/10.1016/j.hm.2004.03.003
  21. Park C. K., Lobachevsky's Philosophy of Mathematics and Non-Euclidean Geometry, The Korean Journal for History of Mathematics 24(4) (2011), 21-31. 박창균, 로바체프스키의 수리철학과 비유클리드기하, 한국수학사학회지 24(4) (2011), 21-31.
  22. G. Ricci, Principi di una teoria delle forme differenziali quadratiche, Annali di Matematica pura ed applicata (2) 12 (1884), 135-167.
  23. G. Ricci, Le calcul differentiel absolu, Bulletin des science mathematiques 16 (1892), 135-167.
  24. G. Ricci, Di alcune applicazioni del Calcolo differenziale assoluto alla teoria delle forme differenziali quadratiche binarie e dei sistemi a due variabili', Atti dell'Istituto Veneto di scienze, lettere ed arti 7 (1893), 167-189.
  25. B. Riemann, Uber die Hypothesen, welche der Geometrie zu Grunde liegen, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen 13 (1867), 1-15.
  26. D. Struik, Schouten, Levi-Civita, and the emergence of Tensor Calculus, The History of Modern Mathematics, Academic Press, (1989), 99-105.
  27. The MacTutor History of Mathematics Archive. 맥튜터수학사기록보관소 http://www-history.mcs.st-and.ac.uk/Biographies.
  28. 수학계보프로젝트 (Mathematics Genealogy Project) http://genealogy.math.ndsu.nodak.edu/index.php.
  29. H. Weyl in the homepage of the Institute for Advanced Study. 미국 프린스턴 고등연구소 (Institute for Advanced Study)의 홈페이지의 바일 소개 https://www.ias.edu/people/weyl.
  30. Wikipedia http://en.wikipedia.org/wiki.