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Abstract
In this work, highly porous carbons were prepared by chemical activation of carbonized 
biomass-derived aerogels. These aerogels were synthesized from watermelon flesh using a 
hydrothermal reaction. After carbonization, chemical activation was conducted using potas-
sium hydroxide to enhance the specific surface area and microporosity. The micro-structural 
properties and morphologies were measured by X-ray diffraction and scanning electron mi-
croscopy, respectively. The specific surface area and microporosity were investigated by 
N2/77 K adsorption-desorption isotherms using the Brunauer-Emmett-Teller method and 
Barrett-Joyner-Halenda equation, respectively. Hydrogen storage capacity was dependent on 
the activation temperature. The highest capacity of 2.7 wt% at 77 K and 1 bar was obtained 
with an activation temperature of 900°C.

Key words: adsorption, carbon aerogel, hydrogen storage

1. Introduction

Hydrogen has many advantages as an alternative to fossil fuels, as it produces no pollut-
ants, has high energy efficiency, and is essentially an unlimited resource [1-3]. However, its 
storage presents a problem. Many hydrogen storage methods have been extensively inves-
tigated, including metal hybrids, liquid hydrogen, high-pressure hydrogen, and adsorption 
[4-7]. Among these storage methods, adsorption by carbon materials has many advantages 
such as good heat resistance, chemical stability, reversibility, and low cost. Many carbon ma-
terials for adsorption have also been reported, and include activated carbon, carbon aerogels, 
graphene, and carbon nanotubes [8-12].

Hydrogen storage capacity is strongly influenced by the specific surface area and micropo-
rosity of the adsorbents [13]. Therefore, various methods for the synthesis and surface modi-
fication of porous carbons have been developed; for example, templating with other porous 
materials such as zeolites, metal-organic frameworks (MOFs), and silica [14-17], and direct 
carbonization of various precursors. Template methods are complicated because they involve 
the removal of the templated materials. Direct carbonization uses environmentally friendly pre-
cursors from agricultural wastes such as rice husks, corncobs, and coconut shells [18,19]. The 
use of these precursors is also helpful in preventing pollution caused by agricultural wastes. 
However, biomass-derived carbons (BCAs) have a relatively low specific surface area, and 
therefore they require activation to increase their specific surface area and micropore volume.

There are two activation methods that are used for BCAs: 1) chemical activation and 2) 
physical activation [20,21]. Chemical activation is conducted using acidic or basic chemicals 
such as H3PO4, KOH, Na2CO3, and NaOH and can lead to high specific surface area and 
microporosity as a consequence of erosion and oxidation. Physical activation requires an 
oxidizing gas, such as water vapor, carbon dioxide etc. 

In this study, we prepared biomass-derived aerogels from watermelon flesh using a hydro-
thermal reaction, followed by carbonization. Chemical activation was conducted at various 
temperatures using KOH to enhance the hydrogen storage capacity of the aerogels.

DOI: http://dx.doi.org/
DOI:10.5714/CL.2015.16.2.127

This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License 
(http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted 
non-commercial use, distribution, and 
reproduction in any medium, provided 
the original work is properly cited.

Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review
Fan-Long Jin and Soo-Jin Park

KCS Korean Carbon Society

 carbonlett.org

pISSN: 1976-4251 
eISSN: 2233-4998

REVIEWS

VOL. 16 NO. 2 April 30 2015



Carbon Letters Vol. 16, No. 2, 127-131 (2015)

DOI: http://dx.doi.org/10.5714/CL.2015.16.2.127 128

Potassium is produced during K2O activation at a high tem-
perature, and it was found that the formation of pores was due 
to the loss of carbon. The SEM images that are shown in Fig. 
2 also indicate the effects of the activation temperature. It can 
be seen that KOH activation changed the sample particle size 
and fineness. K-900-BCA has fine particles and regular granules 
compared with the other K-T-BCAs and BCA. This might be at-
tributed to the erosion of BCAs caused by the higher activation 
temperature.

Fig. 3 shows the nitrogen adsorption-desorption isotherms 
at 77 K. BCA and K-T-BCAs appear to have Type 1 isotherms 
without a noticeable hysteresis loop, which is typical of physi-
sorption in microporous materials [25]. Most of the pores were 
filled below a relative pressure of about 0.1, indicating that these 
samples have high microporosity. However, K-800-BCA and K-
900-BCA show a slight hysteresis loop and increased adsorption 
volume of nitrogen at a relative pressure of about 1.0. These 
results show that the microstructure was destroyed and the mac-
ropores were formed at higher activation temperatures.

2. Experimental

2.1. Materials and preparation

Biomass-derived aerogels were prepared by the hydrother-
mal reaction of watermelon flesh; the details have been pro-
vided elsewhere [22]. The watermelon flesh was cut and put 
into a 100-mL Teflon-lined autoclave. The hydrothermal re-
action was conducted at 180°C for 12 h, and then the sample 
was immersed in a mixture of distilled water and ethanol for 
several days to remove the impurities. After drying at 80°C 
for 12 h, the obtained biomass-derived aerogels were carbon-
ized under flowing N2 (200 mL/min) at 550°C for 1.5 h. The 
resulting BCA was mixed with KOH (mass ratio of 2), heated 
to a target temperature in the range 700°C-900°C in a tubu-
lar furnace under N2 atmosphere (200 mL/min), and main-
tained at the target temperature for 1 h. After cooling down 
to room temperature, the resulting materials were taken out 
and washed with distilled water and hydrochloric acid until 
the pH became neutral. The KOH-activated BCA was labeled 
K-T-BCA, where T denotes the activation temperature.

2.2. Measurements

X-ray diffraction (XRD) measurements were carried out on 
a Bruker-AXS D2 Phaser Desktop X-ray Diffractometer with a 
Lynx-Eye detector using CuKα radiation at 30 kV and 10 mA (λ 
= 1.5406 Å). The patterns were measured with a scan step time 
of 3 s and step size of 0.02°. The scanning electron microscope 
(SEM) images were obtained using Model S-4300SE (Hitachi 
Co., Ltd.). The textural properties were investigated by nitrogen 
adsorption-desorption isotherms at -196°C using a gas adsorp-
tion analyzer (Model BEL-SORP, BEL Co., Ltd.). The samples 
were degassed at 200°C for 6 h before the measurement. The hy-
drogen storage capacity was measured by using a gas adsorption 
analyzer (Model BEL-SORP, BEL Co., Ltd.) at 77 K and 1 bar. 
We used ultrahigh purity hydrogen (99.9999%) in order to reduce 
the influence of other impurities and used the volumetric mea-
surement method to determine the hydrogen storage capacity.

3. Results and Discussion

3.1. Characterization

The XRD patterns of BCA and K-T-BCAs are shown in Fig. 
1. They show typical and almost identical carbon peaks. After 
chemical activation, the peak intensities for carbon at 23° and 
44° decreased, because KOH destroys the microstructure of the 
biomass-derived activated carbons. This mechanism of activa-
tion by KOH has been reported previously [23,24] and is sum-
marized below:

6KOH + 2C → 2K + 3H2 + 2K2CO3 (1)

K2CO3 + C → K2O + 2CO (2)

K2O + C → 2K + CO (3)

Fig. 1. X-ray diffraction patterns of biomass-derived carbon (BCA) and 
K-T-BCAs: (a) BCA, (b) K-700-BCA, (c) K-800-BCA, and (d) K-900-BCA. 

Fig. 2. Scanning electron microscopy images of biomass-derived car-
bon (BCA) and K-T-BCAs: (a) BCA, (b) K-700-BCA, (c) K-800-BCA, and (d) K-
900-BCA.
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can be seen from the results of textural properties, K-900-BCA 
has the highest specific surface area and micropore volume, and 
therefore, it has the highest hydrogen storage capacity. These 
results show that KOH greatly affects carbons at high tempera-
tures. The hydrogen adsorption of the porous carbon materials 

Fig. 4 shows mesopore and micropore size distributions of 
BCA and K-T-BCAs. The BCA and K-T-BCAs have similar 
peaks, but K-900-BCA has the highest peak intensity with most 
pores <1 nm. Moreover, K-900-BCA shows a relatively high 
peak intensity above a pore diameter of 50 nm; these results cor-
respond with Fig. 3. 

In order to understand the pore structures of the BCA and 
K-T-BCAs in detail, Table 1 shows the textural properties of 
BCA and K-T-BCAs. The specific surface area, total pore vol-
ume, and micropore volume of K-T-BCAs were influenced by 
the activation temperature. The specific surface area and pore 
volume of the samples increase as the activation temperature 
was increased. As expected, K-900-BCA has the highest specific 
surface area (1,753 m2g-1), total pore volume (1.229 cm3g-1), and 
micropore volume fraction (72.5%). The high specific surface 
area and good micropore volume fraction provide good condi-
tions for hydrogen adsorption.

3.2. Hydrogen storage capacities

Fig. 5 shows the hydrogen storage capacities of BCA and 
K-T-BCAs at 77 K and 1 bar with various sample activation 
temperatures. K-900-BCA has the highest hydrogen storage ca-
pacity of 2.7 wt%. The corresponding values for K-800-BCA, K-
700-BCA, and BCA are 2.5, 1.9, and 1.1 wt%, respectively. As 

Fig. 3. N2/77 K adsorption-desorption isotherms of biomass-derived 
carbon (BCA) and K-T-BCAs.

Fig. 4. Mesopore and micropore size distribution of biomass-derived carbon (BCA) and K-T-BCAs.

Table 1. N2/77 K textural properties of BCA and K-T-BCAs

Specimens SBET

(m2/g)
VTotal

(cm3/g)
VMeso

(cm3/g)
VMicro

(cm3/g)
VMicro

(%)

BCA 419 0.196 0.044 0.152 77.6

K-700-BCA 945 0.404 0.057 0.347 85.9

K-800-BCA 1,428 0.688 0.189 0.499 72.5

K-900-BCA 1,753 1.229 0.547 0.682 55.5

BCA: biomass-derived carbon.
SBET: specific surface area computed using Brunauer-Emmett-Teller equa-
tion at a relative pressure range of 0.005-0.04.
 VTotal: total pore volume is estimated at relative pressure P/P0 = 0.99.
 VMeso: mesopore volume determined from the Barrett-Joyner-Halenda 
equation.
 VMicro: micropore volume determined from the subtraction of mesopore 
volume from the total pore volume.
 FMicro: fraction of micropore volume = (micropore volume/total pore vol-
ume) × 100.

Fig. 5. Hydrogen storage behaviors of biomass-derived carbon (BCA) 
and K-T-BCAs at 77 K and 1 bar. 
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strongly depended on their microporosity, and the results of 
these experiments correspond with an earlier report [26]. The 
hydrogen storage of BCA and K-T-BCAs was also influenced 
by the microporosity of the samples, which can be enhanced by 
activation.

4. Conclusions

In this study, we prepared biomass-derived activated carbons 
using watermelon flesh and a hydrothermal reaction, followed 
by chemical activation with KOH at various temperatures. The 
obtained porous carbons had specific surface areas in the range 
419-1753 m2g-1 and micropore volumes in the range 0.044-0.547 
cm3g-1. The results show that the specific surface area and mi-
cropore volume were influenced by the activation temperature. 
K-900-BCA showed the highest specific surface area (1753 m2g-

1) and micropore volume (0.547 cm3g-1). Therefore, K-900-BCA 
has the highest hydrogen storage capacity, amounting to 2.7 wt% 
at 77 K and 1 bar. Thus, K-900-BCA can be used as a potential 
hydrogen storage material and can be enhanced with other metal 
doping or surface functionalization to increase its hydrogen stor-
age capacity.
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