DOI QR코드

DOI QR Code

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea

서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가

  • Lee, Jun-Ho (Korean Seas Geosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Rho, Kyoung Chan (Korean Seas Geosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Woo, Han Jun (Marine Geology & Geophysics Division, Korea Institute of Ocean Science & Technology) ;
  • Kang, Jeongwon (Marine Geology & Geophysics Division, Korea Institute of Ocean Science & Technology) ;
  • Jeong, Kap-Sik (Marine Geology & Geophysics Division, Korea Institute of Ocean Science & Technology) ;
  • Jang, Seok (Maritime Security Research Center, Korea Institute of Ocean Science & Technology)
  • 이준호 (한국해양과학기술원 관할해역지질연구센터) ;
  • 노경찬 (한국해양과학기술원 관할해역지질연구센터) ;
  • 우한준 (한국해양과학기술원 지질.지구물리연구본부) ;
  • 강정원 (한국해양과학기술원 지질.지구물리연구본부) ;
  • 정갑식 (한국해양과학기술원 지질.지구물리연구본부) ;
  • 장석 (한국해양과학기술원 해양방위연구센터)
  • Received : 2015.02.10
  • Accepted : 2015.04.01
  • Published : 2015.04.28

Abstract

In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

2014년 8월 31일~9월 1일 충남 태안 어은리 갯벌 퇴적물의 동일한 실험 장소에서 닫힌 챔버를 이용하여 챔버내 가스들(메탄($CH_4$), 이산화탄소($CO_2$) 및 산소($O_2$))의 갯벌 표면 노출시 일조량이 있는 조석주기의 저조 시점을 기준으로 각 기체의 플럭스량을 파악하기 위해 총 6회 실험하였다. 챔버 내에서 채취된 대기 샘플 중 메탄의 농도는 6시간 이내에 지구온실가스 측정용 EG model GS-23 가스크로마토그래피로 분석하였으며 그 외 가스종은 Multi Gas Monitor를 이용하여 실시간 측정하였다. 각 가스 종들의 배출원(source (+)) 또는 흡수원(sink (-))의 플럭스 계산값은 단순 선형 회귀분석을 이용하여 시간에 따른 각 기체의 농도변화인 1차 함수 기울기 값을 수식에 대입하여 계산하였다. 또한 주변 환경 특성을 참고하기 위해 퇴적물 함수율, 온도, 총유기탄소, 챔버내 온도 및 퇴적물 퇴적상도 측정하였다. 첫째날, 총 3회 플럭스 측정이 진행되는 5시간 20분 동안 이산화탄소는 $-137.00{\sim}-81.73mg/m^2/hr$ 흡수원, 산소는 $-0.03{\sim}0.00mg/m^2/hr$ 흡수원 그리고 둘째날, 이산화탄소는 -20.43~-2.11 mg/m2/hr 흡수원, 산소는 $-0.18{\sim}-0.14mg/m^2/hr$ 흡수원으로 모두 동일하였다. 메탄의 경우 양일간 조석주기의 저조 시점이 되기 전에는 첫째날 $-0.02mg/m^2/hr$ 흡수원(SPSS 통계분석을 이용한 Pearson 상관계수는 뚜렷한 음의 선형관계인-0.555(n=5, p=0.332)) 및 둘째날 $-0.15mg/m^2/hr$ 흡수원(상관계수는 강한 음의 선형관계인 -0.915(n=5, p=0.030))으로 작용하였다. 그리고 저조시점 이후로 메탄은 첫째날 최소 $+0.00mg/m^2/hr$ 배출원(상관계수는 거의 무시될 수 있는 선형관계인 +0.713(n=5, p=0.176)) 및 둘째날 최대 $+0.03mg/m^2/hr$ 배출원(상관계수는 약한 양의 선형관계인 +0.194(n=5, p=0.754))이 된다는 플럭스 양상은 양일간 모두 같았다. 그러나 $CH_4$ 플럭스 값은 일자 및 시간별로 모두 다르게 분석되었다. 이러한 결과는 같은 시간, 동일지역 퇴적물 일지라도 $CH_4$ 플럭스 변화율은 갯벌 근처 해수의 표층 조석주기 특성 이해를 통한 가스 방출 상관관계 및 물리화학적 퇴적물 환경과 같은 주변 변수에 따라 영향을 받음 수 있음을 보여준다.

Keywords

References

  1. Cao, M., Marshall, S. and Gregson, K. (1996) Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model. Journal of geophyscical research, v.101, p.399-410.
  2. Chen, G.C., Tam, N.F.Y. and Ye, Y. (2010) Summer fluxes of atmospheric greenhouse gases $N_2O$, $CH_4$ and $CO_2$ from mangrove soil in South China. Science of the Total Environment, v.408, p.2761-2767. https://doi.org/10.1016/j.scitotenv.2010.03.007
  3. Dil, S.G., Blas, E.D., Garreno, N.M., Otero, R.R., Gandara, J.S. and Judd, A.G. (2011) Characterization and preliminary quantification of the methane reservoir in a coastal sedimentary source: San Simon Bay, Ria de Vigo, NW Spain. Coastal and Shelf Science, v.91, p.232-242. https://doi.org/10.1016/j.ecss.2010.10.038
  4. Dlugokencky, E.J., Harris, J.M., Chung, Y.S., Tans, P.P. and Fung, I. (1993) The relationship between the methane seasonal cycle and regional sources sinks at the Tae-ahn peninsul, Korea. Atmospheric Environment, v.27, p.2115-2120. https://doi.org/10.1016/0960-1686(93)90041-V
  5. Fang, C. and Moncrieff, J.B. (2001) The dependence of soil $CO_2$ efflux on temperature. Soil Biology and Biochemistry, v.33, p.155-165. https://doi.org/10.1016/S0038-0717(00)00125-5
  6. Folk, R.L. (1968) Petrology of Sedimentary Rocks. The university of Texas Hemphill's draver M, university station Austin, Texas, 170p.
  7. Freeman, C., Nevison, G.B., Kang, H., Hughes, S., Reynolds, B. and Hudson J.A. (2002) Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biology and Biochemistry, v.34, p.61-67. https://doi.org/10.1016/S0038-0717(01)00154-7
  8. Intergovernmental Panel on Climate Change (IPCC). (2014) Fifth Assessment Report (AR5), http://www.ipcc.ch
  9. Kim, D.S. (2007) Greenhouse Gas ($CH_4$, $CO_2$, $N_2O$) Emissions from estuarine tidal and wetland and their characteristics. Journal of Korean Society for Atmospheric Environment, v.23, p.225-241. [Korean Literature] https://doi.org/10.5572/KOSAE.2007.23.2.225
  10. Kim, D.S. and Na, U.S. (2011) Soil Emission Measurements of $N_2O$, $CH_4$ and $CO_2$ from Intensively Managed Upland Cabbage Field. J. KOSAE, v.27, p.313-325. [Korean Literature] https://doi.org/10.5572/KOSAE.2011.27.3.313
  11. Kim, D.S. and Na, U.S. (2013) Characteristics of greenhouse gas emissions from freshwater wetland and tidal flat in Korea. J. KOSAE, v.29, p.171-185. [Korean Literature] https://doi.org/10.5572/KOSAE.2013.29.2.171
  12. Kim, D.S. and Oh, J.M. (2003) $N_2O$ emissions from agricultural soils and their characteristics. Journal of Korean Society for Atmospheric Environment, v.19, p.529-540. [Korean Literature]
  13. Kim, J. Verma, S.B. and Clement, R.J. (1992) Carbon dioxide budget in a temperate grassland ecosystem. J. Geophy, v.97, p.6057-6063. https://doi.org/10.1029/92JD00186
  14. Kim, G.Y., Pak, S.L., Song, B.H. and Shin, Y.K. (2002) Emission Characteristics of Methane and Nitrous Oxide by Management of Water and Nutrient in a Rice Paddy soil. Korean Journal of Environmental Agriculture, v.21, p.136-143. [Korean Literature] https://doi.org/10.5338/KJEA.2002.21.2.136
  15. Korea Environmental Industry and Technology Institute (KEITI). (2011) Domestic and Foreign Non-industrial Greenhouse Gas Reduction Activities (Special Issues). Global Green Growth Policy (GGGP). [Korean Literature]
  16. Korea Hydrographic and Oceanographic Administration (KHOA). (2014) Tide tables (cost of Korea). p.214-216. [Korean Literature]
  17. Korea Institute of Ocean Science & Technology (KIOST). (2005) Coast of suspended sediment accumulation epidemiological model behavior(Report). 834p. [Korean Literature]
  18. Korea Institute of Ocean Science & Technology (KIOST). (1993) Tidal development feasibility study report of Garolim Bay (Report). 511p. [Korean Literature]
  19. Korea Institute of Ocean Science & Technology (KIOST). (1986) Tidal power follow-up study of Garolim bay and feasibility study of Woosooyoung. 285p. [Korean Literature]
  20. Korea Meteorological Administration (KMA). (2013). http://www.kma.go.kr.
  21. Krumbein, W.C. (1934) Size frequency distributions of sediments. Journal of Sedimentary Petrology, v.4, p.65-77.
  22. Lee, H.J., Jo, H.R., Chu, Y.S. and Bahk, K.S. (2004) Sediment transport on macrotidal flats in Garolim Bay, west coast of korea: Significance of wind waves and asymmetry of tidal currents. Continental Shelf Research, v.4, p.821-832.
  23. Mcmanus, J. (1988) Grain Size Determination and Interpretation. M. Tucker (Ed.), Techniques in Sedimentology, Blackwell, Oxford, p.63-85.
  24. Ministry of Oceans and Fisheries (MOF). (2003) Tidal flat ecosystem research and Utilization Research (5th Year, BSPM 221-00-1610-3). 1098p. [Korean Literature]
  25. Ministry of Oceans and Fisheries (MOF). (2007) Environmental valuation studies of Garolim Bay (Report). 1p. [Korean Literature]
  26. Moore, T.R. and Knowles, R. (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science, v.69, p.33-38. https://doi.org/10.4141/cjss89-004
  27. National Institute of Meteorological Research Korea Meteorological Administration (NIMRKMA). (2011) Understanding climate change XI (climate change of Chungnam). p.2-5. [Korean Literature]
  28. Tidal development feasibility study of Garolim Bay (Report). 285p. [Korean Literature]
  29. Rask, H., Schoenan, J. and Anderson, D. (2002) Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology and Biochemistry, v.34, p.435-443. https://doi.org/10.1016/S0038-0717(01)00197-3
  30. Ruttenberg, K.C. (1992) Development of a sequential extraction method for different forms of phophorous in marine sediments. Limnology and Oceanography, v.37, p.1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
  31. Shin, S.H., Gu, B.J. and Je, J.G. (2004) Spatial Distribution of Benthic Macrofauna on the Tidal Flat of Garolim Bay, West Coast of Korea. Journal of Korean Wetlands Society, v.6, p.57-72. [Korean Literature]
  32. Song, K., Lee, S.H., Mitsch, W.J. and Kang, H. (2010) Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biology and Biochemistry, v.42, p.1721-1727. https://doi.org/10.1016/j.soilbio.2010.06.007
  33. Warneck, P. (2000) Chemistry of the Natural Atmosphere. 2nd edition. Academic Press, New York, NY.
  34. Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J. and Dokken, D.J. (2000) Special Report of the IPCC on Land Use, Land-Use Change, and Forestry. Cambridge University Press, UK.
  35. Wentworth, C.K. (1922) A scale of grade and class terms for clastic sediments. Journal of Geology, v.30, p.377-392. https://doi.org/10.1086/622910