DOI QR코드

DOI QR Code

Thermal Reflow 공정 적용 Micro Pattern 형상 변화를 통한 광 향상 구조층 연구

Study on Optical Control Layer for Micro Pattern Shape Change Using Thermal Reflow Process

  • 성민호 (한국산업기술대학교 신소재공학과) ;
  • 차지민 (한국산업기술대학교 신소재공학과) ;
  • 문성철 (한국산업기술대학교 신소재공학과) ;
  • 유시홍 (한국산업기술대학교 신소재공학과) ;
  • 이성의 (한국산업기술대학교 신소재공학과)
  • 투고 : 2014.12.03
  • 심사 : 2014.12.29
  • 발행 : 2015.05.01

초록

In this study, the change of optical characteristics was studied according to the micro optical pattern provided by photo lithography followed by thermal reflow process. The shape and luminance variation with micro pattern was evaluated by SEM and spectrometers. Also, we analyzed the luminance characteristics using the 3D-optical simulation (Optis works) program. As a result, we found that the radius of curvature(R) in micro pattern is decreased up to 77%($150^{\circ}C$) compared to the radius of curvature at the condition $100^{\circ}C$, which is caused by efficient reflow of organic material without chemical changes. The highest enhancement of brightness with optimum micro pattern was obtained at the condition of $120^{\circ}C$ reflow process. The brightness gain with optical micro patterns is more than 15% at the condition of R=16.95 um, ${\Theta}=77.14^{\circ}$ compared to original optical source. The results of light simulation with various radius of curvature and side angle of pattern shows the similar result of experiment evaluation of light behavior on optical micro patterns. It is regarded that the more effect on light enhancement was contributed by side angle which is effective factor on light reflection, rather than the curvature of micro-patterns.

키워드

참고문헌

  1. M. K. Wei, I. L. Su, and M. C. Jung, Sci. Eng., 7, 81, (2004).
  2. T. W. Choi and S. C. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 15, 10 (2001).
  3. J. C. Tsai and Y. S. Hsu, J. IEEE, 47, 10 (2011).
  4. S. K. Hwang and S. H. Baek, Sci. Eng., 20, 81 (2009).
  5. M. H. Lu and J. C. Strurm, J. Appl. Phys., 91, 595 (2002). https://doi.org/10.1063/1.1425448
  6. P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Pure Appl. Opt., 6, 617 (1997). https://doi.org/10.1088/0963-9659/6/6/004
  7. S. R. Cho, J. Kim, K. S, Oh, S. K. Yang, J. M. Baek, D. H, Jang, T. I. Kim, and H. Jeon, J. IEEE, 14, 378 (2002).
  8. M. H. Lu and J. C. Strurm, Appl. Phys. Lett., 78, 1927 (2001). https://doi.org/10.1063/1.1357207
  9. J. C. Tsai, K. R. Chang, and H. Yang, in Proc. 10th Anniversary Int. Conf. European Society for Precision Engineering and Nanotechnology (Zurich, Switzerland, 2008).
  10. C. S. Lee, C. H. Han, Sensor. Actuat., A, 88, 87 (2001). https://doi.org/10.1016/S0924-4247(00)00493-3
  11. R. Danzebrink and M. A. Aegerter, Thin Solid Films, 392, 223 (2001). https://doi.org/10.1016/S0040-6090(01)01031-8
  12. T. Shiga, H. Fujikawa, and Y. Taga, J. Appl. Phys., 93, 19 (2003). https://doi.org/10.1063/1.1527708
  13. J. K. Lim, Ph. D. Thesis, p.18-21, Kyungpook National University, Daegu (2011).
  14. T. H. Kim, S. H. Park, H. K. Oh, and Y. J. Shin, Optics & Laser Technology, 39, 1437 (2007). https://doi.org/10.1016/j.optlastec.2006.10.002
  15. A. Y. Smuk and N. M. Lawandy, J. Appl. Phys., 87, 4026 (2000). https://doi.org/10.1063/1.372449