DOI QR코드

DOI QR Code

Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity

최대 강도 태풍의 북상 경향에 대한 종관분석

  • Choi, Ki-Seon (Policy Research Department, National Institute of Meteorological Research) ;
  • Park, Ki-Jun (Policy Research Department, National Institute of Meteorological Research) ;
  • Kim, Jeoung-Yun (Policy Research Department, National Institute of Meteorological Research) ;
  • Kim, Baek-Jo (Policy Research Department, National Institute of Meteorological Research)
  • 최기선 (국립기상연구소 정책연구과) ;
  • 박기준 (국립기상연구소 정책연구과) ;
  • 김정윤 (국립기상연구소 정책연구과) ;
  • 김백조 (국립기상연구소 정책연구과)
  • Received : 2015.01.20
  • Accepted : 2015.04.26
  • Published : 2015.04.30

Abstract

Regarding the tropical cyclone (TC) genesis frequency, TCs between 1999 and 2013 were generated more frequently in the northwest waters of the tropical- and subtropical western North Pacific than TCs between 1977 and 1998. TCs over the period from 1977-1998 showed a northward track trend generated mostly from the distant sea in east of the Philippines via the mainland of the Philippines and the South China Sea to the west toward Indochina or from the distant sea in east of the Philippines to the distance sea in east of Japan. TCS over the period from 1999-2013 showed a northward shift pattern to the mid-latitude region mostly in East Asia. Therefore, TCs over the period from 1999-2013 tended to move to much higher latitudes than TCs over the period from 1977-1998, which also resulted in the high possibility of maximum TC intensity occurred in higher latitudes during the former period than the latter period. In the difference of 500 hPa streamline between two periods, the anomalous anticyclonic circulations were strengthened in $30-50^{\circ}N$ whereas the anomalous monsoon trough was placed in north of the South China Sea, which was extended to the east up to $145^{\circ}E$. The mid-latitude in East Asia is affected by the anomalous southeasterlies due to the above anomalous anticyclonic circulations and anomalous monsoon trough. The anomalous southeasterlies play a role in anomalous steering flows that directed TCs to the mid-latitude regions in East Asia, which made the latitudes of the maximum intensities in TCs over the period from 1999 - 2013 further to the north than those in TCs over the period from 1977-1998.

태풍 발생빈도에서 1999-2013년 동안의 태풍 발생빈도는 1977-1998년 동안의 태풍보다 열대 및 아열대 서태평양의 북서해역에서 더 많이 발생하는 경향이 확인되었다. 또 1977-1998년 동안의 태풍은 주로 필리핀 동쪽 먼 해상에서 필리핀 및 남중국해를 지나 인도차이나 반도를 향해 서쪽으로 이동하거나 필리핀 동쪽 먼 해상에서 일본 동쪽 먼 해상으로 북상하는 경향을 보였다. 반면에 1999-2013년 동안에 태풍들은 주로 동아시아 중위도 지역으로 북상하는 패턴을 나타내었다. 따라서 1999-2013년 동안의 태풍들이 1977-1998년 동안의 태풍들보다 훨씬 고위도로 이동하는 경향이 있으며, 결국 후자의 기간보다 전자의 기간에 태풍 최대강도가 고위도에서 나타날 가능성이 높음을 알 수 있었다. 두 기간 사이에 500 hPa 유선에 대한 차에서 $30-50^{\circ}N$에서는 고기압성 순환 아노말리가 강화되어 있는 반면 남중국해의 북쪽에는 몬순 기압골 아노말리가 위치해 있으며, 이 몬순 기압골 아노말리는 $145^{\circ}E$까지 동쪽으로 확장되어 있었다. 이고기압성 순환 아노말리와 몬순 기압골 아노말리에 의해 동아시아 중위도 지역은 남동풍 아노말리의 영향을 받고 있으며, 이 남동풍 아노말리는 태풍들을 동아시아 중위도 지역으로 향하게 하는 지향류 아노말리의 역할을 하게 되어 1999-2013년 동안의 태풍들이 1977-1998년 동안의 태풍들보다 최대 강도의 위도가 증가할 수 있었다.

Keywords

References

  1. Bove, M.C., Zierden, D.F., and O'Brien J.J., 1998a, Are Gulf landfalling hurricanes getting stronger?. Bulletin of American Meteorological Society, 79, 1327-1328. https://doi.org/10.1175/1520-0477(1998)079<1327:AGLHGS>2.0.CO;2
  2. Chan, J.C.L., 2005, Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorological and Atmospheric Physics, 89, 143-152. https://doi.org/10.1007/s00703-005-0126-y
  3. Chan, J.C.L. and Shi, J.E., 1996, Long-term trends and interannual variability in tropical cyclone activity over the western north Pacific. Geophysical Research Letters, 23, 2765-2767. https://doi.org/10.1029/96GL02637
  4. Choi, K.S., Kang, K.R., Kim, D.W., Hwang, H.S., and Lee, S.R., 2009, A study on the characteristics of tropical cyclone passage frequency over the western North Pacific using Empirical Orthogonal Function. Journal of Korean Earth Science Society, 30, 721-733 https://doi.org/10.5467/JKESS.2009.30.6.721
  5. Choi, K.S. and Kim, T.R., 2011a, Development of a diagnostic index on the approach of typhoon affecting Korean Peninsula. Journal of Korean Earth Science Society 32, 347-359 https://doi.org/10.5467/JKESS.2011.32.4.347
  6. Choi, K.S., and Kim, T.R., 2011b, Regime shift of the early 1980s in the characteristics of the tropical cyclone affecting Korea. Journal of Korean Earth Science Society, 32, 453-460. https://doi.org/10.5467/JKESS.2011.32.5.453
  7. Chu, P.S., 2002, Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. Journal of Climate, 15, 2678-2689. https://doi.org/10.1175/1520-0442(2002)015<2678:LSCFAW>2.0.CO;2
  8. Chu, P.S. and Clark, J.D., 1999, Decadal variations of tropical cyclone activity over the central North Pacific. Bulletin of American Meteorological Society, 80, 1875-1881. https://doi.org/10.1175/1520-0477(1999)080<1875:DVOTCA>2.0.CO;2
  9. Elsner, J.B., Jagger, T.H., and Niu, X.F., 2000, Changes in the rates of North Atlantic major hurricane activity during the 20th century. Geophysical Research Letters, 27, 1743-1746. https://doi.org/10.1029/2000GL011453
  10. Elsner, J.B., Kossin, J.P., and Jagger, T.H., 2008, The increasing intensity of the strongest tropical cyclones. Nature, 455, 92-95. https://doi.org/10.1038/nature07234
  11. Emanuel, K., 2005, Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686-688. https://doi.org/10.1038/nature03906
  12. Goh, A.Z.C. and Chan J.C.L., 2009, Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. International Journal of Climatology, 30, 827-843.
  13. Ho, C.H., Baik, J.J., Kim, J.H., and Gong, D.Y., 2004, Interdecadal changes in summertime typhoon tracks. Journal of Climate, 17, 1767-1776. https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2
  14. Kalnay, E., Coauthors, 1996, The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of American Meteorological Society, 77, 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  15. Kamahori H., Yamazaki N., Maanji N., and Takahashi K., 2006, Variability in intense tropical cyclone days in the western North Pacific. SOLA, 2, 104-107. https://doi.org/10.2151/sola.2006-027
  16. Kim, J.H., Ho, C.H., and Sui, C.H., 2005, Circulation features associated with the record-breaking typhoon landfall on Japan in 2004. Geophysical Research Letters, 32(L14713), doi:10.1029/2005GL022494.
  17. Kistler, R., Coauthors, 2001, The NCEP/NCAR 50-year reanalysis. Bulletin of American Meteorological Society, 82, 247-267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
  18. Klotzbach, P.J., 2006, Trends in global tropical cyclone activity over the past twenty years. Geophysical Research Letters, 33, L10805, doi:10.1029/2006GL025881.
  19. Kossin, J.P., Emanueal, K.A., and Wecchi, G.A., 2014, The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349-355. https://doi.org/10.1038/nature13278
  20. Landsea, C.W., 2007, Counting Atlantic tropical cyclones back to 1900. EOS, 88, 197-208.
  21. Landsea, C.W., Nicholls N., Gray W.M., and Avilia L.A., 1996, Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophysical Research Letters, 23, 1697-1700. https://doi.org/10.1029/96GL01029
  22. Liebmann, B. and Smith, C.A., 1996, Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of American Meteorological Society, 77, 1275-1277.
  23. Lighthill, J. and Coauthors, 1994, Global climate change and tropical cyclones. Bulletin of American Meteorological Society, 75, 2147-2157.
  24. Lyon, B. and Camargo, S.J., 2008, The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dynamics, 32, doi:10.1007/s00382-008-0380-z.
  25. NOAA National Climatic Data Center, 2013, State of the Climate: Hurricanes and Tropical Storms for Annual 2013
  26. Pan, C.J., Reddy, K.K., Lai, H.C., and Yang, S.S., 2010, Role of mixed precipitating cloud systems on the typhoon rainfall. Annales Geophysicae, 28, 11-16. https://doi.org/10.5194/angeo-28-11-2010
  27. Park, D.S.R., Ho C.H., Kim J.H., and Kim H.S., 2011, Strong landfall typhoons in Korea and Japan in a recent decade, Journal of Geophysical Research, 116, D07105, doi:10.1029/2010JD014801.
  28. Park, S.K. and Lee, E.H., 2007, Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated with Typhoon Rusa (2002). Geophysical Research Letters, 34(L02803), doi:10.1029/2006GL028592.
  29. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., and Wang, W., 2002, An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  30. Wang, B. and Chan J.C.L., 2002, How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15, 1643-1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  31. Webster, P.J., Coauthors, 2005, Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. https://doi.org/10.1126/science.1116448
  32. Wilks, D.S., 1995, Statistical methods in the atmospheric sciences. Academic Press, 467 pp.
  33. Wingo, M.T. and Cecil, D.J., 2010, Effects of vertical wind shear on tropical cyclone precipitation. Monthly Weather Review, 138, 645-662. https://doi.org/10.1175/2009MWR2921.1
  34. Yang, W.J. and Yi, W.H., 2013, Safety evaluation of mansionary buildings for Tsunami. Journal of Korean Socirty of Hazard Mitigation, 13, 45-49. https://doi.org/10.9798/KOSHAM.2013.13.6.045

Cited by

  1. Extreme Precipitation Frequency Analysis Using a Minimum Density Power Divergence Estimator vol.9, pp.2, 2017, https://doi.org/10.3390/w9020081
  2. A Study on the Time-Periodic Characteristics of Changes in Typhoon Activities and Typhoon-Induced Rainfall over the Korean Peninsula vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.395