DOI QR코드

DOI QR Code

Polymerization of L-lactide Using Methylalumionxane

Methylaluminoxane을 이용한 L-lactide 중합

  • Yim, Jin-Heong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Da Hee (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2014.06.11
  • Accepted : 2014.10.01
  • Published : 2015.05.25

Abstract

In this study, the bulk and solution polymerizations of L-lactide using an aluminium compound, methylaluminoxane (MAO), were performed. In the bulk polymerization, the conversion of polymerization was increased with increasing the amount of catalyst in feed. The largest molecular weight (Mw), 60800 g/mol, was shown at the MAO amount in feed of 0.15 mmol, and Mw was decreased above 0.15 mmol of MAO in feed. At the 0.15 mmol of MAO in feed, turn of frequency (TOF) was the highest, and it was decreased with increasing MAO amount in feed. In the solution polymerization, the induction time of 30 min was shown. The conversion of polymerization was linearly increased with the polymerization time, and the highest Mw, 54700 g/mol, was achieved at the polymerization time of 6 h.

본 연구에서는 Al 화합물인 methylaluminoxane(MAO)를 이용하여 L-lactide의 벌크중합 및 용액중합을 실시하였다. 촉매 투입량에 따른 벌크중합 결과, 투입량이 증가할수록 전환율이 증가하였다. 분자량은 촉매 투입량이 0.15 mmol일 때 60800 g/mol로 가장 높은 분자량을 얻었으며 그 이상의 투입량에서는 분자량이 감소하였다. Turnover frequency(TOF)값의 경우 촉매 투입량이 0.15 mmol일 때 가장 크고 촉매 투입량이 증가할수록 감소하였다. 용액중합에서는 30분 가량 induction time이 존재하였다. 중합 시간에 따라 3시간까지 전환율이 선형적으로 증가하였으며 6시간일 때 54700 g/mol로 가장 높은 분자량을 얻었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. K. H. Kwun, W. S. Cha, J. W. Nah, and D. B. Lee, J. Korean Ind. Eng. Chem., 12, 148 (2001).
  2. J. H. Kim, J. G. Jegal, B. K. Song, and C. H. Shin, Polym. Korea, 35, 52 (2011).
  3. Y. S. You, K. H. So, and M. S. Chung, Korean J. Food Sci. Technol., 40, 365 (2008).
  4. A. J. R. Lasprilla, G. A. R. Martinez, B. H. Luneli, A. L. Jardini, and R. M. Fiho, Biotechnol. Adv., 30, 321 (2012). https://doi.org/10.1016/j.biotechadv.2011.06.019
  5. W. J. Kim, J. H. Kim, S. H. Kim, and Y. H. Kim, Polym. Korea, 24, 431 (2000).
  6. Y. Ikada and H. Tsuji, Macromol. Rapid. Commun., 21, 117 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  7. K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol., 101, 8493 (2010). https://doi.org/10.1016/j.biortech.2010.05.092
  8. E. M. Filachione, Ind. Eng. Chem., 36, 223 (1994).
  9. A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003). https://doi.org/10.1021/bm034247a
  10. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  11. E. M. Filachione, Ind. Eng. Chem., 36, 223 (1994).
  12. Y. H. Kim and S. H. Kim, Ind. Eng. Chem., 3, 387(1992).
  13. K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman, Macromolecules, 35, 644 (2002). https://doi.org/10.1021/ma011873w
  14. H. R. Kricheldorf, C. Boettcher, and K. U. Tonnes, Polymer, 33, 2817 (1992). https://doi.org/10.1016/0032-3861(92)90459-A
  15. A. J. Nijenhuis, D. W. Grijpma, and A. J. Pennings, Macromolecules, 25, 6419(1992). https://doi.org/10.1021/ma00050a006
  16. H. R. Kricheldorf and C. Boettcher, Makromol. Chem., 194, 1653 (1993). https://doi.org/10.1002/macp.1993.021940613
  17. J. Okuda and I. L. Rushkin, Macromolecules, 26, 5530 (1993). https://doi.org/10.1021/ma00072a036
  18. M. Hayakawa, M. Mitani, T. Yamada, and T. Mukaiyama, Macromol. Chem. Phys., 198, 1305 (1997). https://doi.org/10.1002/macp.1997.021980502
  19. F. Chabot, M. Vert, S. Chapelle, and P. Granger, Polymer, 24, 53 (1983). https://doi.org/10.1016/0032-3861(83)90080-0
  20. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci., Polym. Rev., 45, 337 (2005).
  21. Y. H. Noh and Y. S. Ko, Polym. Korea, 36, 53 (2012). https://doi.org/10.7317/pk.2012.36.1.053
  22. J. Y. Yoo, D. H. Kim, and Y. S. Ko, Polym. Korea, 36, 593 (2012). https://doi.org/10.7317/pk.2012.36.5.593
  23. J. Y. Yoo and Y. S. Ko, Polym. Korea, 36, 693 (2012). https://doi.org/10.7317/pk.2012.36.6.693
  24. J. Y. Yoo, Y. Kim, and Y. S. Ko, J. Ind. Eng. Chem., 19, 1137 (2012).
  25. H. Shin, Macromol. Symp., 27, 97(1995).
  26. A. K. Sudesh, H. Abe, and Y. Doi, Prog. Polym. Sci., 25, 1503 (2000). https://doi.org/10.1016/S0079-6700(00)00035-6
  27. K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988). https://doi.org/10.1016/0032-3861(88)90116-4

Cited by

  1. Ti(dibenzoylmethane)2(O-i-Pr)2 합성과 L-락티드 개환중합 vol.42, pp.2, 2018, https://doi.org/10.7317/pk.2018.42.2.261