DOI QR코드

DOI QR Code

Mechanical Property and Thermal Stability of Epoxy Composites Containing Poly(ether sulfone)

폴리에테르설폰이 도입된 에폭시 복합재의 열 안정성 및 기계적 특성

  • Lee, Si-Eun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jeong, Euigyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Man Young (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Min-Kyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2014.08.27
  • Accepted : 2014.10.05
  • Published : 2015.05.25

Abstract

Poly(ether sulfone) (PES) embedded diglycidylether of bisphenol-A (DGEBA) epoxy composites were fabricated for improving its mechanical properties and thermal stability. The mechanical properties such as tensile, flexural and impact strength of the composites changed significantly with the introduction of PES. The value of the fracture toughness of this composite also was increased remarkably about 24%. Thermal stability of PES/epoxy composites also improved 12%, which was calculated with integral procedural decomposition temperature (IPDT). From the differential scanning calorimeter (DSC) result, the curing temperature and curing heat decreased according to the increase of PES contents. These were attributed to the good distribution and the formation of the semi-interpenetrating polymer networks (semi-IPNs) composed of the epoxy network and linear PES.

Poly(ether sulfone) (PES)가 첨가된 비스페놀-A 에폭시 복합재가 그 기계적 특성 및 열 안정성을 증진하기 위하여 제조되었다. 인장강도, 굽힘강도 및 충격강도 등의 기계적 강도가 PES 함량에 따라 의미있게 변화하였다. 특히 그 파괴인성 값은 약 24%의 정도 크게 향상되었다. 적분 열분해 진행온도를 통하여 계산된 PES/에폭시 복합재의 열 안정성은 PES 미첨가 에폭시와 비교하여 12%의 향상을 보였다. 또한 DSC 분석 결과 PES 함량이 증가함에 따라 경화온도와 경화열이 점점 감소함을 확인하였다. 이러한 현상은 에폭시 수지와 선형 PES가 가교구조(semi-interpenetrating polymer networks; semi-IPNs)를 형성하고 잘 분산되었기 때문으로 판단된다.

Keywords

Acknowledgement

Supported by : 국방과학연구소

References

  1. B. Ellis, Chemistry and Technology of Epoxy Resin, Blackie Acad. Prof., Glasgow, 1993.
  2. M. O. Ansari, S. P. Ansari, S. K. Yadav, T. Anwer, M. H. Cho, and F. Mohammad, J. Ind. Eng. Chem., 20, 2010 (2014). https://doi.org/10.1016/j.jiec.2013.09.024
  3. S. E. Lee, S. Cho, and Y. S. Lee, Carbon Lett., 15, 32 (2014). https://doi.org/10.5714/CL.2014.15.1.032
  4. M. Zaidi, S. Joshi, M. Kumar, D. Sharma, A. Kumar, S. Alam, and P Sah, Carbon Lett., 14, 218 (2013). https://doi.org/10.5714/CL.2013.14.4.218
  5. H. Lee and K. Nevile, Handbook of Epoxy Resin, McGraw-Hill, New York, 1967.
  6. S. M. Moschior, C. C. Riccardi, R. J. J. Williams, D. Verchere, H. Santerean, and J. P. Pascanit, J. Appl. Polym. Sci., 42, 717 (1991). https://doi.org/10.1002/app.1991.070420316
  7. S. J. Wu, T. K. Lin, and S. S. Shyn, J. Appl. Polym. Sci., 75, 26 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000103)75:1<26::AID-APP4>3.0.CO;2-3
  8. M. Ochi, R. Takahashi, and A. Terauchi, Polymer, 42, 5151 (2001). https://doi.org/10.1016/S0032-3861(00)00935-6
  9. C. B. Bucknall and H. G. Adrian, Polymer, 30, 213 (1989). https://doi.org/10.1016/0032-3861(89)90107-9
  10. M. A. Andres, J. Garmendia, A. Valea, A. Eceiza, and I. Mondragon, J. Appl. Polym. Sci., 69, 183 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980705)69:1<183::AID-APP21>3.0.CO;2-#
  11. D. J. Hourston and J. M. Lane, Polymer, 33, 1379 (1992). https://doi.org/10.1016/0032-3861(92)90110-I
  12. F. L. Jin and S. J. Park, J. Ind. Eng. Chem., 14, 564 (2014).
  13. G. S. Bennett, R. J. Farris, and S. A. Thompson, Polymer, 32, 1633 (1991). https://doi.org/10.1016/0032-3861(91)90399-4
  14. N. Biolley, T. Pascal, and B. Sillion, Polymer, 35, 558 (1994). https://doi.org/10.1016/0032-3861(94)90511-8
  15. K. Kubotera and A. F. Yee, ANTEC, 92, 2610 (1992).
  16. J. L. Hedrick, I. Yilgor, M. Jurek, J. C. Hedrick, G. L. Wilkes, and J. E. McGrath, Polymer, 32, 2020 (1991). https://doi.org/10.1016/0032-3861(91)90168-I
  17. T. H. Yoon, S. C. Liptak, D. Priddy, and J. E. McGrath, ANTEC, 93, 3011 (1993).
  18. K. Yamanaka and T. Inoue, Polymer, 30, 662 (1989). https://doi.org/10.1016/0032-3861(89)90151-1
  19. C. B. Buckall and I. K. Partridge, Polym. Eng. Sci., 26, 54 (1986). https://doi.org/10.1002/pen.760260110
  20. Y. K. Choi, K. Sugimoto, S. M. Song, Y. Gotoh, Y. Ohkoshi, and M. Endo, Carbon, 43, 2199 (2005). https://doi.org/10.1016/j.carbon.2005.03.036
  21. S. Zheng, J. Wang, Q. Guo, J. Wei, and J. Li, Polymer, 37, 4667 (1996). https://doi.org/10.1016/S0032-3861(96)00324-2
  22. ASTM Standard D790, ASTM, West Conshohocken, DA, USA.
  23. N. Tanaka, T. Iijima, W. Fukuda, and M. Tomoi, Polym. Int., 42, 95 (1997). https://doi.org/10.1002/(SICI)1097-0126(199701)42:1<95::AID-PI679>3.0.CO;2-C
  24. H. Kishi, Y. B. Shi, J. Huang, and A. F. Yee, J. Mater. Sci., 32, 761 (1997). https://doi.org/10.1023/A:1018512507960
  25. W. F. Brown Jr. and J. E. Srawley, ASTM STP, 410, 13 (1966).
  26. N. H. Nieu, T. T. Tan, and N. L. Huong, J. Appl. Polym. Sci., 61, 2259 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2259::AID-APP3>3.0.CO;2-B
  27. J. S. Saito, J. Polym. Sci., A-2, 1297 (1968).
  28. C. D. Doyle, Anal. Chem., 33, 77 (1961). https://doi.org/10.1021/ac60169a022
  29. W. Jenniger, J. E. K. Schawe, and I. Alig, Polymer, 41, 1577 (2000). https://doi.org/10.1016/S0032-3861(99)00274-8
  30. K. Mimura, H. Ito, and H. Fujioka, Polymer, 41, 4451 (2000). https://doi.org/10.1016/S0032-3861(99)00700-4
  31. B. Fernandez, M. A. Corcuera, C. Marieta, and I. Mondragon, Eur. Polym. J., 37, 1863 (2001). https://doi.org/10.1016/S0014-3057(01)00045-3