DOI QR코드

DOI QR Code

Preparation and Properties of Polystyrene/Graphene Nanofiller Nanocomposites via Latex Technology

라텍스 기법에 의한 폴리스티렌/그래핀 나노필러 나노복합재료의 제조 및 물성

  • Yeom, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Chung, Dae-Won (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
  • 염효열 (수원대학교 공과대학 신소재공학과) ;
  • 나효열 (수원대학교 공과대학 신소재공학과) ;
  • 정대원 (수원대학교 공과대학 신소재공학과) ;
  • 이성재 (수원대학교 공과대학 신소재공학과)
  • Received : 2014.10.04
  • Accepted : 2014.12.09
  • Published : 2015.05.25

Abstract

Electrically conductive polymer nanocomposites were prepared by the inclusion of graphene-based nanofillers. Graphene oxide (GO) and reduced graphene oxide wrapped by poly(styrene sulfonate) (PSS-RGO) were used as nanofillers to make good dispersion with the aqueous dispersion of polystyrene (PS) particles. GO sheets were synthesized by the modified Hummers' method from graphite, and PSS-RGO sheets were prepared by the reduction of GO-dispersed PSS solution with hydrazine monohydrate. Morphology and properties of PS/GO and PS/PSS-RGO nanocomposites via latex technology were investigated. Both nanofillers showed well dispersed morphology in PS matrix. Rheological and electrical percolation thresholds were 0.28 and 0.51 wt% for GO, and 0.50 and 1.01 wt% for PSS-RGO respectively. It is speculated that PS/GO nanocomposites showed better conductivity than PS/PSS-RGO counterparts due to the partial recovery of GO by thermal reduction during molding.

고분자 재료에 전기 전도성을 부여하기 위해 그래핀 기반의 나노필러를 도입하여 전도성 나노복합재료를 제조하였다. 그래핀 나노필러는 폴리스티렌(PS) 입자와 수계 분산이 용이하도록 산화 그래핀(GO) 및 poly(styrene sulfonate)가 도포된 환원된 산화 그래핀(PSS-RGO)을 사용하였다. GO는 흑연으로부터 modified Hummers 방법으로 합성하였으며, PSS-RGO는 GO가 분산된 PSS 용액을 hydrazine monohydrate로 환원시켜 제조하였다. 라텍스 기법으로 제조한 PS/GO 및 PS/PSS-RGO 나노복합재료의 모폴로지, 유변물성 및 전기적 물성을 고찰하였다. GO 및 PSS-RGO 나노필러는 PS 매트릭스 내에 잘 분산된 모폴로지를 보여 주었다. 그래핀 나노필러 함량에 따른 유변학적, 전기적 임계점은 GO가 0.28, 0.51 wt%로 나타났고 PSS-RGO는 0.50, 1.01 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전기 전도도를 보여주는 이유는 성형시의 열처리에 의해 GO가 환원되어 전기적 물성을 부분적으로 회복했기 때문으로 판단된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/B512799H
  2. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008). https://doi.org/10.1021/nl0731872
  5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  6. W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Carbon, 65, 296 (2013). https://doi.org/10.1016/j.carbon.2013.08.029
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  8. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A de Heer, J. Phys. Chem. B, 108, 19912 (2004). https://doi.org/10.1021/jp040650f
  9. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  10. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature, 458, 877 (2009). https://doi.org/10.1038/nature07919
  11. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  12. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Chem. Mater., 11, 771 (1999). https://doi.org/10.1021/cm981085u
  13. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon, 42, 2929 (2004).
  14. I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Nat. Commun., 1, 73 (2010).
  15. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, 1487 (2008). https://doi.org/10.1021/nn800251f
  16. W. Chen, L. Yan, and P. R. Bangal, Carbon, 48, 1146 (2010). https://doi.org/10.1016/j.carbon.2009.11.037
  17. S. Gurunathan, J. W. Han, V. Eppakayala, and J. H. Kim, Colloid Surf. B, 105, 58 (2013). https://doi.org/10.1016/j.colsurfb.2012.12.036
  18. J. Wang, T. Zhou, H. Deng, F. Chen, K. Wang Q. Zhang, and Q. Fu, Colloids Surf. B, 101, 171 (2013). https://doi.org/10.1016/j.colsurfb.2012.06.008
  19. S. Jiang, Z. Gui, C. Bao, K. Dai, X. Wang, K. Zhou, Y. Shi, S. Lo, and Y. Hu, Chem. Eng. J., 226, 326 (2013). https://doi.org/10.1016/j.cej.2013.04.068
  20. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006). https://doi.org/10.1016/j.polymer.2005.11.028
  21. L. Li, R. Ma, N. Iyi, Y. Ebina, K. Takada, and T. Sasaki, Chem. Commun., 29, 3125 (2006).
  22. H. M. Ju, S. H. Huh, S. H. Choi, and H. L. Lee, Mater. Lett., 64, 357 (2010). https://doi.org/10.1016/j.matlet.2009.11.016
  23. C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, and A. Tuantranont, J. Mater. Chem., 22, 5478 (2012). https://doi.org/10.1039/c2jm14005e
  24. K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Langmuir, 27, 2014 (2011). https://doi.org/10.1021/la104420p
  25. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004). https://doi.org/10.1021/ma049164g

Cited by

  1. Flexible free-standing composite films having 3D continuous structures of hollow graphene ellipsoids vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3072-7