DOI QR코드

DOI QR Code

Characteristics of Heat Curable Polyorganosiloxane Coating Materials

페닐기 함유 열경화성 폴리유기실록산 코팅제 특성

  • Lee, Jin Hyouk (Department of Polymer Science and Engineering, Dankook University) ;
  • Kang, Doo Whan (Department of Polymer Science and Engineering, Dankook University) ;
  • Kang, Ho-Jong (Department of Polymer Science and Engineering, Dankook University)
  • 이진혁 (단국대학교 공과대학 고분자공학과, 광 에너지 소재 연구센터) ;
  • 강두환 (단국대학교 공과대학 고분자공학과, 광 에너지 소재 연구센터) ;
  • 강호종 (단국대학교 공과대학 고분자공학과, 광 에너지 소재 연구센터)
  • Received : 2014.12.24
  • Accepted : 2015.02.04
  • Published : 2015.05.25

Abstract

Polyorganosiloxane having controlled cross-linking density and phenyl group content were prepared by dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS) and phenyltrimethoxysilane (PTMS). The effect of cross-linking density and phenyl group content on the physical properties of siloxane resin and its coated film have been invetigated. Si-NMR results confirmed that synthesized siloxane resins have equivalent D $T^{Me}$ $T^{Ph}$ structures according to applied mole ratios of DMDMS, MTMS and PTMS. Polyorganosiloxane having higher cross-linking density with high phenyl content showed the high molecular weight and increasing phenyl content resulted in higher refractive index as well as better thermal stability. Cross-linking density is more important factor than phenyl content to obtain higher pencil hardness of coated film on the glass. Our results concluded that even polyorganosiloxanes having similar siloxane structures show different physical properties as function of cross-linking density and phenyl content in polyorganosiloxane.

Dimethyldimethoxysilane(DMDMS), methyltrimethoxysilane(MTMS)과 phenyltrimethoxysilane(PTMS)을 이용하여 폴리유기실록산 열 경화성 코팅액을 제조하고 가교도와 페닐기 함량이 코팅액과 도막 물성에 미치는 영향을 살펴보았다. Si-NMR 측정에서 얻어진 D $T^{Me}$ $T^{Ph}$ 구조 코팅액 조성비가 사용된 DMDMS, MTMS, PTMS의 몰 비로부터 얻어진 이론치와 일치함을 확인할 수 있었다. 가교밀도가 높을수록 그리고 페닐 함량이 낮을수록 실록산 결합의 증가에 의하여 코팅액 분자량이 증가됨을 알 수 있으며 페닐기 증가는 코팅액 굴절률 증가에 매우 큰 영향을 미침을 알 수 있었다. 가교밀도가 높을수록, 페닐기 함량이 감소할수록 코팅도막 경도는 증가되었으며 내열특성 또한 우수해짐을 확인할 수 있었다. 이상의 결과로부터 같은 실록산 결합을 갖는 폴리유기실록산 코팅제라도 치환도에 따른 가교도 조절과 페닐기 함량에 따라 코팅액 물성이 달라짐을 확인할 수 있었다.

Keywords

References

  1. I. N. Jung, 3rd Generation Silicone Chemistry, Free Academy, Seoul, Korea, p 398 (2009).
  2. W. Noll, Chemistry and Technology of Silicone, Academic Press, New York, p 573 (1968).
  3. F. O. Stark, J. R. Falender, and A. P. Wright, Silicones, Comprehensive Organometallic Chemistry, Pergamon Press, Exeter, Vol 2, p 305 (1982).
  4. G. G. Freeman, Silicones: An Introduction to Their Chemistry and Applications, Iliffe Books, London, p 119 (1962).
  5. G. E. Zaikov, Degradation and Stabilization of Polymers: Theory and Practice, Nova Publishers, New York, p 238 (1995).
  6. W. Heilen, Silicone Resins and Their Combinations, Vincent Network GmbH & Co. KG, Hannover, p 102 (2005).
  7. R. R. McGregor, Silicones and Their Uses, Mellon Institute, McGraw-Hill, New York, p 302 (1954).
  8. A. Tomanek, Silicones & Industry: A Compendium for Practical Use, Instruction and Reference, Hanser Gardner Pubns, Munich, Germany, p 172 (1993).
  9. T. L. Cottrell, The Strength of Chemical Bonds, 2nd Ed., Butterworths Publications, New York, p 317 (1958).
  10. E. P. Plueddeman, Silane Coupling Agents, Springer, New York, p 235 (1982).
  11. J. H. Lee, S. H. Kang, J. Y. Park, J. M. An, J. H. Park, and J. H Yoo, Korean Patent 10-2011-0070546 (2013).
  12. A. L. Smith, The Analytical Chemistry of Silicones, John Wiley & Sons, Inc., Midland, p 576 (1991).
  13. Y. Makoto, N. Koji, M. Masashi, and T. Kasumi, Korean Patent 10-2005-7007440 (2005).
  14. J. S. Kim, S. C. Yang, S. Y. Kwak, Y. Choi, K. W. Paik, and B. S. Bae, J. Mater. Chem., 22, 7954 (2012). https://doi.org/10.1039/c2jm16907j
  15. D. S. Thompson, L. D. Boardman, and C. A. Leatherdale, US Patent 7655486 B2 (2010).
  16. P. R. Dvornic and M. J. Owen, Silicon-Containing Dendritic Polymers, Springer, Midland, p 444 (2009).
  17. B. Arkles, J. R. Steinmetz, J. Zazyczny, and P. Mehta, J. Adhe. Sci. Tech., 6, 193 (1992). https://doi.org/10.1163/156856192X00133
  18. H. Jiang, Z. Zheng, and X. Wang, Vib. Spectrosc., 46, 1 (2008). https://doi.org/10.1016/j.vibspec.2007.07.002
  19. H. Schmidt, H. Scholze, and A. Kaiser, J. Non-Cryst. Sol., 63, 1 (1984). https://doi.org/10.1016/0022-3093(84)90381-8
  20. N. Garcia, E. Benito, J. Guzman, and P. Tiemblo, J. Am. Chem. Soc., 129, 5052 (2007). https://doi.org/10.1021/ja067987a
  21. T. N. M. Bernards, M. J. Van Bommel, and A. H. Boonstra, J. Non-Cryst. Sol., 134, 1 (1991). https://doi.org/10.1016/0022-3093(91)90005-Q