DOI QR코드

DOI QR Code

Airspeed Estimation of Course Correction Munitions by Using Extended Kalman Filter

확장 칼만필터를 이용한 탄도수정탄의 대기속도 추정

  • Sung, Jaemin (ReCAPT and Dept. of Aerospace and System Engineering, Gyeongsang National University) ;
  • Kim, Byoung Soo (ReCAPT and Dept. of Aerospace and System Engineering, Gyeongsang National University)
  • Received : 2015.01.20
  • Accepted : 2015.04.09
  • Published : 2015.05.01

Abstract

This paper represents a filter design to estimate the airspeed of a spin-stabilized, trajectory-correctible artillery ammunition. Due to the limited power and space in operational point of view, the airspeed sensor is not installed, and thus the airspeed need to be estimated using limited sensor measurements. The only IMU measurements(three-axis specific forces and angular rates) are used in this application. The extended Kalman filter algorithm is applied since a linear filter can not cover the its wide operational range in airspeed and altitude. In the implementation of the EKF, the state and measurement equations are transformed into the no-roll frame for simple form of Jacobian matrix. The simulation study is conducted to evaluate the performance of the filter under various environment conditions of sensor noise and wind turbulence. In addition, the effect of the choice in filter design parameters, i.e. process error covariance matrices is analyzed on the performance of the estimation of airspeed and angular rates.

본 논문은 회전안정성을 갖는 탄도수정탄의 대기속도 추정을 위한 필터 설계에 대하여 설명한다. 대상 시스템은 운용상의 제약(공간, 파워)으로 인하여, 대기속도 측정을 위한 센서를 사용할 수 없다. 따라서 한정된 센서를 이용한 대기속도 추정이 필요하다. 따라서 본 연구에서는 IMU(가속도계, 자이로)에서 측정하는 3축 가속도와 각속도 데이터만 이용하여, 대기속도 추정을 위한 필터를 설계하였다. 대상 시스템의 경우, 넓은 속도, 고도의 운용범위를 커버하기 위한 추정 필터가 필요하므로 본 연구에서는 확장 칼만필터를 설계하여 기존의 연구와의 차별성을 두었다. 확장 칼만필터 설계를 위한 자코비안 행렬은 NRF(No-roll frame)에서의 간략화된 선형모델을 이용하여 구성하였다. 최종적으로 센서 오차와 바람 모델을 포함한 시뮬레이션을 통해 그 성능을 검토하였다. 이때, 시뮬레이션은 설계한 대기속도와 각속도 모델 오차의 영향을 분석하기 위하여 네 가지 경우의 프로세스 공분산 행렬 값에 대한 영향을 분석하였다.

Keywords

References

  1. Clancy, J. A., Bybee, T. D., Friedrich, W. A., "Fixed Canard 2-D Guidance of Artillery Projectiles," U.S. Patent 6,981,672 B2, 2006.
  2. Bar, K., Kautzsch, K., "Spin-Stabilized Correctible-Trajectory Artillery Shell" U.S. Patent 7,584,922 B2, 2009.
  3. Leininger, J., "Method for Correcting the Flight Path of Ballistically Fired Spin-Stabilized Artillery Ammunition," U.S. Patent 7,267,298 B2, 2007.
  4. Lievens, K., Mulder, J., and Chu, P., "Single GPS antenna attitude determination of a fixed wing aircraft with aircraft aerodynamics," AIAA Guidance, Navigation, and Control Conference and Exhibit, 15-18, Aug., 2005, San Francisco, California, 2005-6056.
  5. Cho, A., Kim, J., Lee, S., Kee, C., "Fully automatic taxiing, takeoff and landing of a UAV using a single antenna GPS receiver only," Proceedings of International Conference on Control, Automation and Systems, pp. 821-825, Seoul, Korea, 2007.
  6. Jin, J. H., Park, J. W., Kim, B. M., Kim, B. S., and Lee, E. Y., "Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters," Journal of Institute of Control, Robotics and Systems, Vol. 15, No. 8, pp. 859-866, Aug. 2009. https://doi.org/10.5302/J.ICROS.2009.15.8.859
  7. Kim, B. D., Lee, J. S., "Steady State Kalman Filter based IMM Tracking Filter for Multi-Target Tracking," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 34, no. 8, pp. 71-78, 2006. https://doi.org/10.5139/JKSAS.2006.34.8.071
  8. Kim, Y., Jung, W., and Bang, H., "Visual Target Tracking and Relative Navigation for Unmanned Aerial Vehicles in a GPS-Denied Environment," IJASS, vol. 15, no. 3, pp.258-266, September, 2014.
  9. Marins, J. L., Yun, X., Bachmann, E. R., McGhee, R. B., Zyda, M. J., "An extended Kalman filter for quaternion-based orientation estimation using MARG sensors," Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, Oct. 29-NOV. 03, 2001.
  10. Cho, S. Y., Kim, B. D., Cho, Y. S., Choi, W. S., "Multi-Filter Fusion Technique for INS/GPS," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 34, no. 10, pp. 48-55, 2006. https://doi.org/10.5139/JKSAS.2006.34.10.048
  11. Costello, M. F., "Modeling and Simulation of a Differential Roll Projectile," Army Research Laboratory, Jul. 2000.
  12. Haykin, S. (ed) (2001) Kalman Filtering and Neural Networks, John Wiley & Sons, Inc., New York, USA.
  13. Costello, M. F., and Peterson, A. A., "Linear Theory of a Dual-Spin Projectile in Atmospheric Flight," Army Research Laboratory, Feb. 2000.
  14. U.S. Military., 1980, U.S. Military Specification MIL-F-8785C.