DOI QR코드

DOI QR Code

Analysis on Mission Lifetime and Collision Avoidance of Cubesat Launched from ISS

ISS에서 발사되는 큐브위성의 임무수명 및 충돌회피 분석

  • Yeom, Seung-Yong (School of Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Hongrae (School of Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Chang, Young-Keun (School of Aerospace & Mechanical Engineering, Korea Aerospace University)
  • Received : 2014.12.02
  • Accepted : 2015.03.16
  • Published : 2015.05.01

Abstract

Since the first Cubesat was launched in 2003, there have been more than 230 Cubesats launched so far. Due to their small size and lightweight, Cubesats were launched by utilizing the empty space of regular launch vehicle. However, this launch method has a weakness that has been easily affecting by the schedule of major payloads. As a new solution to this problem, it has been proposed that a robot arm installed on ISS would be used to launch Cubesats. The orbits of Cubesat deployed from the ISS in various angles and directions are analyzed in this paper. We also analyze the possibility of collision between the Cubesat and ISS within the operational orbit of the CubeSat and eventually calculate the optimal angle of a robot arm, which maximizes the lifetime of Cubesat and minimizes the risk of collision between the Cubesat and ISS.

큐브위성은 2003년 처음 발사된 이후로 지금까지 230기 이상이 발사되었다. 작은 크기와 가벼운 무게로 인해 발사비용이 저렴한 큐브위성은 일반적인 발사체의 남는 공간을 이용하여 발사되고 있다. 그러나 이러한 발사 방법은 주 탑재위성의 준비일정에 따라 발사 일정이 유동적인 단점이 있다. 이에 새로운 대안으로 정기적이고 발사횟수가 많은 국제우주정거장 물자수송 발사체를 이용하여 큐브위성을 ISS로 운송한 뒤에 로봇팔을 이용하여 발사하는 방법이 제안되고 있다. 본 논문에서는 국제우주정거장에서 분리되는 방향과 각도에 따라 생성되는 큐브위성의 궤도를 분석하였다. 또한 분석되는 궤도에 따른 임무수명과 ISS와의 충돌 가능성을 분석하여 충돌 위험을 최소화하고 위성수명을 최대로 하는 최적의 로봇팔 각도를 계산하였다.

Keywords

References

  1. NASA, LCC, "Commercial Orbital Transportation Services-A New Era in Spaceflight", NASA, 2013
  2. NanoRacks, LCC, "NanoRacks CubeSat Deployer (NRCSD) Interface Control Document", NRCSD ICD, Revision 0.36, 2013
  3. Salvatore Alfano, "Addressing Nonlinear Relative Motion For Spacecraft Collision Probability", AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006.
  4. Jae-Dong Seong, Dae-Woo Lee, Kyeum-Rae Cho, Hae-Dong Kim and Hak-Jung Kim, "Analysis of the Collision Probability and Mission Environment for GEO", The Korea Society for Aeronautical and Space Sciences, Vol. 39, No. 7, pp. 674-681, 2011. https://doi.org/10.5139/JKSAS.2011.39.7.674
  5. Jae-Dong Seong, Hae-Dong Kim and Seong-Min Lim, "An Analysis of Three-dimensional Collision Probability according to Approaching Objects to the KOMPSAT Series", The Korea Society for Aeronautical and Space Sciences, Vol. 41, No. 2, pp. 151-163, 2013.
  6. Salvatore Alfano, "A Numerical Implementation of Spherical Object Collision Probability", Journal of the Astronautical Sciences, Vol. 53, No. 1, pp. 103-109, 2005.
  7. Ai-Ai Lumnay C. Cojuangco, "Orbital Lifetime Analyses of Pico-and Nano-Satellites", Master's Thesis, Florida University, USA, 2007.
  8. Belcher, S. J., Rowell, L. N., and Smith, M. C., "Satellite Lifetime Program," The Rand Corporation, RM-4007-NASA, 1964.