DOI QR코드

DOI QR Code

On-orbit Analysis of Power Generation Efficiency of Concentrating Photovoltaic System Using Commercial Fresnel Lens for Pico Satellite Applications

상용 프레넬렌즈를 이용한 극초소형 위성용 집광형 태양전력 시스템의 궤도 전력생성효율 분석

  • Park, Tae-Yong (Space Technology Synthesis Laboratory, Department of Aerospace Engineering, Chosun University) ;
  • Chae, Bong-Geon (Space Technology Synthesis Laboratory, Department of Aerospace Engineering, Chosun University) ;
  • Oh, Hyun-Ung (Space Technology Synthesis Laboratory, Department of Aerospace Engineering, Chosun University)
  • Received : 2014.11.29
  • Accepted : 2015.03.16
  • Published : 2015.04.01

Abstract

Pico satellite has limited surface to install the solar cells due to its extremely limited size. Also, the sun incidence angle with respect to the solar panel continuously varies according to the attitude control strategy and its important parameter for the power generation. In this study, a concentrating photovoltaic system for pico satellite application has been proposed that can enhance the power generation efficiency in case of the unfavorable condition of the sun incidence angle with respect to the solar panel of the satellite using the fresnel lens. To prove the possibility of maximizing the power generation efficiency of the proposed concentrating power system, we have performed the power measurement test using a solar simulator and commercial fresnel lens. And on-orbit analysis of the power generation efficiency using the STK which is a commercial S/W has also been performed based on the test results.

극초소형 위성은 극히 제한적인 크기로 인하여 태양전지판 장착을 위한 표면적이 제한적이다. 또한 자세제어 방식에 따라서는 태양전지판에 대한 태양 입사각이 계속적으로 변화하며 이는 전력생성에 있어 주요 변수이다. 본 논문에서는 태양전지판에 대한 태양입사각이 전력생성에 불리한 조건에도 프레넬렌즈를 이용해 전력생성효율 향상이 가능한 극초소형 위성용 집광형 태양전력시스템을 제안하였다. 제안된 집광형 태양전력시스템의 전력생성효율 극대화 가능성 입증을 위하여 태양광 모사기와 상용 프레넬렌즈를 이용한 전력측정시험을 수행하였으며, 시험결과를 기반으로 상용 S/W인 STK를 활용해 영구자석 안정화 자세제어 방식이 적용된 극초소형 위성의 궤도 전력생성효율 분석을 수행하였다.

Keywords

References

  1. Tanaka, T., Kawamura, Y., and Tanaka, T., "Overview and Operations of CubeSat FITSAT-1 (NIWAKA)", 6th IEEE International Conference on Recent Advances in Space Technologies(RAST), 2013, pp.887-892.
  2. Taraba, M., Rayburn, C., Tsuda, A., and MacGillivray, C., "Boeing's CubeSat TestBed 1 Attitude Determination Design and On-Orbit Experience", 23rd Annual AIAA/USU Conference on Small Satellites, 2009, pp.1-9.
  3. Munoz, E., Vidal, P. G., Nofuentes, G., Hontoria, L., Perez-Higueras, P., Terrados, J., Almonacid, G., and Aguilera, J., "CPV Standardization: An Overview", Renewable and Sustainable Energy Reviews, Vol. 14, No. 1, 2010, pp.518-523. https://doi.org/10.1016/j.rser.2009.07.030
  4. Foresi, J., Babej, A., Han, R., Liao, T., Wang, C., and King, D., "Suncore's CPV Power Plant Deployment in Western China", 40th IEEE Photovoltaic Specialist Conference(PVSC), 2014, pp.3282-3286.
  5. Naoki, S., and Shigeo, K., "Recent Wireless Power Transmission Technologies in Japan for Space Solar Power Station/Satellite" 2009 IEEE Radio and Wireless Symposium, 2009, pp.13-15.
  6. Park. T. Y., Chae, B. G., Lee, Y. G., Kang, S. J., and Oh, H. U., "Experimental Investigation of Concentrating Photovoltaic System Applying Commercial Multi-array Lens for Space Applications", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 7, 2014, pp.622-627. https://doi.org/10.5139/JKSAS.2014.42.7.622
  7. Buljan, M., Minano, J. C., Benítez, P., Mohedano, R., and Chaves, J., "Improving Performances of Fresnel CPV Systems: Fresnel-RXI Köhler Concentrator", Optics Express, Vol. 22, No. S2, 2014, pp.A205-A210. https://doi.org/10.1364/OE.22.00A205
  8. Shanks, K., Sarmah, N., Reddy, K. S., and Mallick, T., "The Design of a Parabolic Reflector System with High Tracking Tolerance for High Solar Concentration", 10th International Conference on Concentrator Photovoltaic Systems: CPV-10, Vol. 1616, 2014, pp.211-214.
  9. Ju, X., Wang, Z., Flamant, G., Li, P., and Zhao, W., "Numerical Analysis and Optimization of a Spectrum Splitting Concentration Photovoltaic-Thermoelectric Hybrid System", Solar Energy, Vol. 86, No. 6, 2012, pp.1941-1954. https://doi.org/10.1016/j.solener.2012.02.024
  10. http://www.nasa.gov/directorates/spacetech/niac/mankins_sps_alpha.html
  11. Yoon, Y. S., Choe, N. N., Lee, H. H., Choi, J. S., "Technological Trends in Space Solar Power", Current Industrial and Technological Trends in Aerospace, Vol. 7, No. 2, 2009, pp.33-39.
  12. Gerhardt, D. T., and Palo, S. E., "Passive Magnetic Attitude Control for CubeSat Spacecraft", 24th Annual AIAA/USU Conference on Small Satellites, 2010, pp.1-10.