DOI QR코드

DOI QR Code

Theoretical analysis of superelastic SMA helical structures subjected to axial and torsional loads

  • Zhou, Xiang (School of Aeronautics and Astronautics, Shanghai Jiao Tong University) ;
  • You, Zhong (Department of Engineering Science, University of Oxford)
  • Received : 2013.12.02
  • Accepted : 2014.05.05
  • Published : 2015.05.25

Abstract

Helical structures made of superelastic shape memory alloys are widely used as interventional medical devices and active actuators. These structures generally undergo large deformation during expansion or actuation. Currently their behaviour is modelled numerically using the finite element method or obtained through experiments. Analytical tools are absent. In this paper, an analytical approach has been developed for analyzing the mechanical responses of such structures subjected to axial and torsional loads. The simulation results given by the analytical approach have been compared with both numerical and experimental data. Good agreements between the results indicate that the analysis is valid.

Keywords

References

  1. Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings", Int. J. Plasticity, 26(7), 976-991. https://doi.org/10.1016/j.ijplas.2009.12.003
  2. Atanackovic, T. and Achenbach, M. (1989), "Moment-curvature relations for a pseudoelastic beam", Continuum Mech. Thermodyn., 1(1), 73-80. https://doi.org/10.1007/BF01125887
  3. Aurrichio, F. and Sacco, E. (1997), "A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite", Int. J. Nonlinear Mech., 32(6), 1101-1114. https://doi.org/10.1016/S0020-7462(96)00130-8
  4. Auricchio, F., Taylor, R.L. and Lubliner, J. (1997), "Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour", Comput. Method. Appl. M., 146(3-4), 281-312. https://doi.org/10.1016/S0045-7825(96)01232-7
  5. Berg, B.T. (1995), "Bending of superelastic wires, part I: experimental aspecls", J. Appl. Mech. -T ASME, 62(2), 459-465. https://doi.org/10.1115/1.2895952
  6. Boyd, J.G. and Lagoudas, D.C. (1996), "A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy", Int. J. Plasticity, 12(6), 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  7. Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J.Mech. Phys. Solids, 50(5), 1051-1077. https://doi.org/10.1016/S0022-5096(01)00112-0
  8. Chaudhry, Z. and Rogers C.A. (1991), "Bending and shape control of beams using SMA actuators", J Intel. Mat. Syst. Sir., 2(4), 581-602. https://doi.org/10.1177/1045389X9100200410
  9. Degeratu, S., Bizdoaca, N.G., Manolea, G., Diaconu, I., Petrisor, A. and Degeratu V. (2008), On the design of a shape memory alloy spring actuator using thermal analysis", WSEAS Transactions on Systems, 10(7), 1006-1015.
  10. He, Y.J. and Sun, Q.P. (2011), "On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars", Int. J. Solids Struct., 48(11-12), 1688-1695. https://doi.org/10.1016/j.ijsolstr.2011.02.017
  11. Hill, B.B., Faruqi, R.M., Newman, C.E., Arko, F.R., Fogarty, T.J. and Zarins, C.K. (2004), "Successful treatment of an above-knee femoropopliteal bypass anastomotic stenosis with the aSpire covered stent", Perspectives in Vascular Surgery and Endovascular Therapy, 16(3), 181-185. https://doi.org/10.1177/153100350401600306
  12. Khan, E. and Srinivasan, S.M. (2011), "A new approach to the design of helical shape memory alloy spring actuators", Smart Mater. Res., 2011,1-5.
  13. Mansfield, E.H. (1980), "On finite inextensional deformation of a helical strip", Int J. Nonlinear Mech.,15(6),459-467. https://doi.org/10.1016/0020-7462(80)90032-3
  14. Peultier, B., Ben Zineb, T. and Patoor, E. (2006), "Macroscopic constitutive law for SMA: Application to structure analysis by FEM", Mat. Sci. Eng: A, 438-440, 454-458. https://doi.org/10.1016/j.msea.2006.01.104
  15. Qidwai, M.A. and Lagoudas, D.C. (2000), "Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms", Int. J. Numer. Meth. Eng., 47(6), 1123-1168. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
  16. Roguin, A., Grenadier, E., Linn, S., Markiewicz, W. and Beyar, R. (1999), "Continued expansion of the nitinol self-expanding coronary stent: angiographic analysis and 1-year clinical follow-up", Am Heart J., 138(2), 326-333. https://doi.org/10.1016/S0002-8703(99)70120-1
  17. Spinella, I. and Dragoni, E. (2010), "Analysis and design of hollow helical springs for shape memory actuators",J. Intel. Mat. Syst. Str., 21(2),185-199. https://doi.org/10.1177/1045389X09356021
  18. Sun, Q. and Li, Z. (2002), "Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-from localization to homogeneous deformation", Int. J. Solids Struct., 39(13-14), 3797-3809. https://doi.org/10.1016/S0020-7683(02)00182-8
  19. Timoshenko, S. (1956), Strength of Materials. Part 2 of 2: Advanced Theory and Problems, D. Van Nostrand Company Inc., Princeton.
  20. Toi, Y., Lee, J.B. and Taya, M. (2004), "Finite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs", Comput. Struct., 82(20-21), 1685-1693. https://doi.org/10.1016/j.compstruc.2004.03.025
  21. vonRiesen, E.T. (2008), Active Hyperhelical Structures, Ph.D. Dissertation, University of Cambridge, Cambridge.
  22. Young, W.C. (1989), Roark's Formulas for Stress and Strain, (6th Ed.), McGraw Hill Book Company, New York London.
  23. Yates, S.J. and Kalamkarov, A.L. (2013), "Experimental study of helical shape memory alloy actuators: Effects of design and operating parameters on thermal transients and stroke", Metals, 3(1), 123-149. https://doi.org/10.3390/met3010123
  24. Zhou, X., You, Z. and Eaton-Evans, J. (2008), "A numerical study of a helical nitinol stent", Proceedings of the SMST-2007 the International Conference on Shape Memory and Superelastic Technologies, ASM International.
  25. Zhu, S. and Zhang Y. (2007), "A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence", Smart. Mater. Struct., 16(5), 1696-1707. https://doi.org/10.1088/0964-1726/16/5/023

Cited by

  1. Modeling and control of a flexible continuum module actuated by embedded shape memory alloys vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.663
  2. Optimum design and vibration control of a space structure with the hybrid semi-active control devices vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.341
  3. Numerical Simulation and Experimental Study of a Simplified Force-Displacement Relationship in Superelastic SMA Helical Springs vol.19, pp.1, 2019, https://doi.org/10.3390/s19010050
  4. Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337