DOI QR코드

DOI QR Code

Muscular Adaptations and Novel Magnetic Resonance Characterizations of Spinal Cord Injury

  • Lim, Woo-Taek (Dept. of Physical Therapy, College of Health and Welfare, Woosong University)
  • Received : 2015.03.27
  • Accepted : 2015.05.02
  • Published : 2015.05.21

Abstract

The spinal cord is highly complex, consisting of a specialized neural network that comprised both neuronal and non-neuronal cells. Any kind of injury and/or insult to the spinal cord leads to a series of damaging events resulting in motor and/or sensory deficits below the level of injury. As a result, muscle paralysis (or paresis) leading to muscle atrophy or shrinking of the muscle along with changes in muscle fiber type, and contractile properties have been observed. Traditionally, histology had been used as a gold standard to characterize spinal cord injury (SCI)-induced adaptation in spinal cord and skeletal muscle. However, histology measurements is invasive and cannot be used for longitudinal analysis. Therefore, the use of conventional magnetic resonance imaging (MRI) is promoted to be used as an alternative non-invasive method, which allows the repeated measurements over time and secures the safety against radiation by using radiofrequency pulse. Currently, many of pathological changes and adaptations occurring after SCI can be measured by MRI methods, specifically 3-dimensional MRI with the advanced diffusion tensor imaging technique. Both techniques have shown to be sensitive in measuring morphological and structural changes in skeletal muscle and the spinal cord.

Keywords

References

  1. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: A preliminary report. JAMA. 1911;57(11):878-880.
  2. Allen AR. Remarks on the histopathological changes in the spinal cord due to impact. An experimental study. J Nerv Ment Dis. 1914;41(3): 141-147. https://doi.org/10.1097/00005053-191403000-00002
  3. Armstrong RB, Phelps RO. Muscle fiber type composition of the rat hindlimb. Am J Anat. 1984;171 (3):259-272. https://doi.org/10.1002/aja.1001710303
  4. Baker JH, Matsumoto DE. Adaptation of skeletal muscle to immobilization in a shortened position. Muscle Nerve. 1988;11(3):231-244. https://doi.org/10.1002/mus.880110308
  5. Baldwin KM, Roy RR, Sacks RD, et al. Relative independence of metabolic enzymes and neuromuscular activity. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(6):1602-1607.
  6. Berkowitz M. Spinal cord injury: An analysis of medical and social costs. New York, Demos Medical Publishing, 1998:1.
  7. Brown MD, Cotter MA, Hudlicka O, et al. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflugers Arch. 1976;361(3):241-250. https://doi.org/10.1007/BF00587288
  8. Burnham R, Martin T, Stein R, et al. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord. 1997;35(2):86-91. https://doi.org/10.1038/sj.sc.3100364
  9. Castro MJ, Apple DF Jr, Hillegass EA, et al. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol. 1999a;80(4):373-378. https://doi.org/10.1007/s004210050606
  10. Castro MJ, Apple DF Jr, Staron RS, et al. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol. 1999b;86 (1):350-358. https://doi.org/10.1152/jappl.1999.86.1.350
  11. De Smet E, Vanhoenacker FM, Parizel PM. Traumatic myelopathy: Current concepts in imaging. Semin Musculoskelet Radiol. 2014;18(3): 318-331. http://dx.doi.org/10.1055/s-0034-1375573
  12. Dudley GA, Castro MJ, Rogers S, et al. A simple means of increasing muscle size after spinal cord injury: A pilot study. Eur J Appl Physiol Occup Physiol. 1999;80(4):394-396. https://doi.org/10.1007/s004210050609
  13. Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24(5): 254-264. https://doi.org/10.1097/00002826-200109000-00002
  14. Elder CP, Apple DF, Bickel CS, et al. Intramuscular fat and glucose tolerance after spinal cord injury- a cross-sectional study. Spinal Cord. 2004; 42(12):711-716. https://doi.org/10.1038/sj.sc.3101652
  15. Ellingson BM, Kurpad SN, Schmit BD. Functional correlates of diffusion tensor imaging in spinal cord injury. Biomed Sci Instrum. 2008;44:28-33.
  16. Engstrom CM, Loeb GE, Reid JG, et al. Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat. 1991;176:139-156.
  17. Enoka RM. Muscle strength and its development. New perspectives. Sports Med. 1988;6(3):146-168. https://doi.org/10.2165/00007256-198806030-00003
  18. Favero TG. Sarcoplasmic reticulum Ca (2+) release and muscle fatigue. J Appl Physiol. 1999;87(2): 471-483. https://doi.org/10.1152/jappl.1999.87.2.471
  19. Fehlings MG, Sekhon L. Cellular, Ionic and Biomolecular Mechanisms of the Injury Process in Contemporary Management of Spinal Cord Injury: From impact to rehabilitation. Chicago, IL, American Association of Neurological Surgeons, 2000:33.
  20. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):49-94. https://doi.org/10.1152/physrev.1994.74.1.49
  21. Ford JC, Hackney DB, Alsop DC, et al. MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med. 1994;31(5): 488-494. https://doi.org/10.1002/mrm.1910310504
  22. Gordon T, Mao J. Muscle atrophy and procedures for training after spinal cord injury. Phys Ther. 1994;74(1):50-60. https://doi.org/10.1093/ptj/74.1.50
  23. Gordon T, Pattullo MC. Plasticity of muscle fiber and motor unit types. Exerc Sport Sci Rev. 1993;21:331-362.
  24. Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007;45(4):304-309. https://doi.org/10.1038/sj.sc.3101968
  25. Gorgey AS, Dudley GA. Spasticity may defend skeletal muscle size and composition after incomplete spinal cord injury. Spinal Cord. 2008;46 (2):96-102. https://doi.org/10.1038/sj.sc.3102087
  26. Halkjaer-Kristensen J, Ingemann-Hansen T. Variations in single fibre areas and fibre composition in needle biopsies from the human quadriceps muscle. Scand J Clin Lab Invest. 1981;41(4): 391-395. https://doi.org/10.3109/00365518109092061
  27. Hashemi RH, Bradley WG, Lisanti CJ. MRI: The basics. 2nd ed. Philadelphia, Lippincott Williams & Wilkins, 2004:63.
  28. Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: A review. NMR Biomed. 2001; 14(2):57-64. https://doi.org/10.1002/nbm.683
  29. Hopman MT, Nommensen E, van Asten WN, et al. Properties of the venous vascular system in the lower extremities of individuals with paraplegia. Paraplegia. 1994;32(12):810-816. https://doi.org/10.1038/sc.1994.128
  30. Hutchinson KJ, Linderman JK, Basso DM. Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: A time course study. J Neurotrauma. 2001;18(10):1075-1089. https://doi.org/10.1089/08977150152693764
  31. Jankala H, Harjola VP, Petersen NE, et al. Myosin heavy chain mRNA transform to faster isoforms in immobilized skeletal muscle: A quantitative PCR study. Journal of Appl Physiol. 1997;82(3): 977-982. https://doi.org/10.1152/jappl.1997.82.3.977
  32. Kelley BJ, Harel NY, Kim CY, et al. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma. 2014;31(15):1362-1373. http://dx.doi.org/10.1089/neu.2013.3238
  33. Kozlowski P, Raj D, Liu J, et al. Characterizing white matter damage in rat spinal cord with quantitative MRI and histology. J Neurotrauma. 2008;25(6):653-676. http://dx.doi.org/10.1089/neu.2007.0462
  34. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401-407. https://doi.org/10.1148/radiology.161.2.3763909
  35. Lieber RL, Johansson CB, Vahlsing HL, et al. Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. I. Contractile properties. Exp Neurol. 1986;91(3):423-434. https://doi.org/10.1016/0014-4886(86)90041-5
  36. Liu M, Bose P, Walter GA, et al. A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal cord. 2008; 46(7):488-493. http://dx.doi.org/10.1038/sj.sc.3102169
  37. Lotta S, Scelsi R, Alfonsi E, et al. Morphometric and neurophysiological analysis of skeletal muscle in paraplegic patients with traumatic cord lesion. Paraplegia. 1991;29(4):247-252. https://doi.org/10.1038/sc.1991.35
  38. Mahoney ET, Bickel CS, Elder C, et al. Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(7):1502-1504. https://doi.org/10.1016/j.apmr.2004.12.021
  39. Martin TP, Stein RB, Hoeppner PH, et al. Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J Appl Physiol. 1992;72(4):1401-1406. https://doi.org/10.1152/jappl.1992.72.4.1401
  40. Midha R, Fehlings MG, Tator CH, et al. Assessment of spinal cord injury by counting corticospinal and rubrospinal neurons. Brain Res. 1987;410(2): 299-308. https://doi.org/10.1016/0006-8993(87)90328-3
  41. Midrio M, Danieli Betto D, Betto R, et al. Cordotomy-denervation interactions on contractile and myofibrillar properties of fast and slow muscles in the rat. Exp Neurol. 1988; 100(1):216-236. https://doi.org/10.1016/0014-4886(88)90214-2
  42. Mortazavi MM, Verma K, Harmon OA, et al. The microanatomy of spinal cord injury: A review. Clin Anat. 2015;28(1):27-36. http://dx.doi.org/10.1002/ca.22432
  43. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439-445. https://doi.org/10.1148/radiology.176.2.2367658
  44. Murphy RKJ, Gamble P, Sun P, et al. 144 predicting recovery after a spinal cord injury: The role of diffusion basis spectrum imaging as a biomarker of corticospinal tract integrity. Neurosurgery. 2014;61:207.
  45. Narayana PA, Grill RJ, Chacko T, et al. Endogenous recovery of injured spinal cord: Longitudinal in vivo magnetic resonance imaging. J Neurosci Res. 2004;78(5):749-759. https://doi.org/10.1002/jnr.20275
  46. National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2013;36(1):1-2. https://doi.org/10.1179/1079026813Z.000000000136
  47. Otis JS, Roy RR, Edgerton VR, et al. Adaptations in metabolic capacity of rat soleus after paralysis. J Appl Physiol. 2004;96(2):584-596. https://doi.org/10.1152/japplphysiol.00724.2003
  48. Pachter BR, Eberstein A. Neuromuscular plasticity following limb immobilization. J Neurocytol. 1984;13(6):1013-1025. https://doi.org/10.1007/BF01148599
  49. Peterson SL, Anderson AJ. Complement and spinal cord injury: Traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol. 2014;258:35-47. http://dx.doi.org/10.1016/j.expneurol. 2014.04.028
  50. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000; 50(6):500-509. https://doi.org/10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7
  51. Prakash YS, Zhan WZ, Miyata H, et al. Adaptations of diaphragm neuromuscular junction following inactivity. Acta Anat (Basel). 1995;154(2): 147-161. https://doi.org/10.1159/000147762
  52. Reimers CD, Finkenstaedt M. Muscle imaging in inflammatory myopathies. Curr Opin Rheumatol. 1997;9(6):475-485. https://doi.org/10.1097/00002281-199711000-00002
  53. Rochester L, Chandler CS, Johnson MA, et al. Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 1. Contractile properties. Paraplegia. 1995;33(8): 437-449. https://doi.org/10.1038/sc.1995.97
  54. Ronsyn MW, Berneman ZN, Van Tendeloo VF, et al. Can cell therapy heal a spinal cord injury? Spinal Cord. 2008;46(8):532-539. http://dx.doi. org/10.1038/sc.2008.13
  55. Roy RR, Baldwin KM, Edgerton VR. The plasticity of skeletal muscle: Effects of neuromuscular activity. Exerc Sport Sci Rev. 1991;19:269-312.
  56. Scelsi R, Marchetti C, Poggi P, et al. Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Acta Neuropathol. 1982;57(4):243-248. https://doi.org/10.1007/BF00692178
  57. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976). 2001;26 (24 Suppl):S2-S12. https://doi.org/10.1097/00007632-200112151-00002
  58. Shah PK, Stevens JE, Gregory CM, et al. Lower-extremity muscle cross-sectional area after incomplete spinal cord injury. Arch Phys Med Rehabil. 2006;87(6):772-778. https://doi.org/10.1016/j.apmr.2006.02.028
  59. Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol. 1989;257(4 Pt 1): E567-E572.
  60. Singh A, Murray M, Houle JD. A training paradigm to enhance motor recovery in contused rats: Effects of staircase training. Neurorehabil Neural Repair. 2011;25(1):24-34. http://dx.doi.org/10.1177/1545968310378510
  61. Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003;20(3): 1714-1722. https://doi.org/10.1016/j.neuroimage.2003.07.005
  62. Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429-1436. https://doi.org/10.1006/nimg.2002.1267
  63. Stein JM, Padykula HA. Histochemical classification of individual skeletal muscle fibers of the rat. Am J Anat. 1962;110:103-123. https://doi.org/10.1002/aja.1001100203
  64. Stevens JE, Liu M, Bose P, et al. Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. J Neurotrauma. 2006;23(11): 1671-1681. https://doi.org/10.1089/neu.2006.23.1671
  65. Sun SW, Liang HF, Le TQ, et al. Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage. 2006;32(3): 1195-1204. https://doi.org/10.1016/j.neuroimage.2006.04.212
  66. Talmadge RJ, Castro MJ, Apple DF, et al. Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol. 2002a;92(1):147-154. https://doi.org/10.1152/japplphysiol.000247.2001
  67. Talmadge RJ, Roy RR, Caiozzo VJ, et al. Mechanical properties of rat soleus after long-term spinal cord transection. J Appl Physiol. 2002b;93(4): 1487-1497. https://doi.org/10.1152/japplphysiol.00053.2002
  68. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15-26. https://doi.org/10.3171/jns.1991.75.1.0015
  69. Tzekou A, Fehlings MG. Treatment of spinal cord injury with intravenous immunoglobulin G: Preliminary evidence and future perspectives. J Clin Immunol. 2014;34 Suppl 1:S132-S138. https://doi.org/10.1007/s10875-014-0021-8
  70. Williams JH, Klug GA. Calcium exchange hypothesis of skeletal muscle fatigue: A brief review. Muscle Nerve. 1995;18(4):421-434. https://doi.org/10.1002/mus.880180409
  71. Ye F, Baligand C, Keener JE, et al. Hindlimb muscle morphology and function in a new atrophy model combining spinal cord injury and cast immobilization. J Neurotrauma. 2013;30(3): 227-235. http://dx.doi.org/10.1089/neu.2012.2504