DOI QR코드

DOI QR Code

Characteristics of Chemiluminescence Intensities of Kerosene/Air Swirl Flames

케로신/공기 와류 화염의 화학발광 세기 특성에 관한 실험적 연구

  • Lee, Hyeonjae (Department of Mechanical Engineering, Hanbat Nat'l Univ.) ;
  • Seo, Seonghyeon (Department of Mechanical Engineering, Hanbat Nat'l Univ.)
  • 이현재 (한밭대학교 기계공학과) ;
  • 서성현 (한밭대학교 기계공학과)
  • Received : 2014.12.12
  • Accepted : 2015.04.08
  • Published : 2015.06.01

Abstract

The present study presents experimental results on the characteristics of emission spectra of kerosene/air swirl flames. The aviation fuel Jet A-1, which is used for the liquid rocket engines of the Korea Space Launch Vehicle, is used with three different swirlers to investigate the swirl strength effects. The emission spectra from the flames are measured with a spectrometer as the swirl strength and combustion air temperature are varied. Chemiluminescence intensities of $OH^*$, $CH^*$ and $C_2{^*}$ are identified from the spectra. The chemiluminescence intensities from the kerosene flames show sensitivity to the swirl strength and are affected by changes in the combustion air temperature. Among the three radicals of interest, $C_2{^*}$ show the most significant changes in chemiluminescence intensity with the swirl strength and equivalence ratio. The intensity ratios $I_{OH^*}/I_{CH^*}$ and $I_{C_2{^*}}/I_{CH^*}$ are adequate for indicating changes in the equivalence ratio with the air and fuel mass flow rates, respectively.

본 논문은 와류 유동이 존재하는 케로신/공기 화염 자발광 특성을 실험적 접근방법으로 수행한 연구이다. 한국형 발사체 액체로켓엔진에 적용되는 Jet A-1 을 사용하였고, 와류 세기 영향을 파악하기 위해 세 가지의 스월러를 적용해 실험을 진행하였다. 와류 세기, 연소 공기온도 변화에 따른 화염 자발광을 분광기를 활용하여 계측하였다. 자발광 스펙트럼에서 $OH^*$, $CH^*$, $C_2{^*}$등의 라디칼에 의한 화학발광 특성을 파악하였다. 케로신 화염의 화학발광 세기는 와류 세기에 민감한 반응을 보였으며, 연소 공기온도에 의한 영향은 적게 받았다. 특히 $C_2{^*}$ 화학발광 방출 세기는 와류 세기와 당량비 변화에 민감하게 반응하였다. 화염 특성을 파악하기 위해 각 라디칼 세기 비로 데이터를 분석한 결과, $I_{OH^*}/I_{CH^*}$ 화학발광 세기 비는 공기 유량 변화에 의한 당량비 변화를 지시하기가 적합하며, $I_{C_2{^*}}/I_{CH^*}$ 화학발광 세기 비는 연료 유량변화에 따른 당량비 변화를 지시하기에 적합하였다.

Keywords

References

  1. Press Release, Ministry of Education and Science Technology(MEST), http://www.mest.go.kr/
  2. Correa, S. M., 1998, "Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology," Twenty-Seventh Symposium (International) on Combustion, Vol. 27, No. 2, pp. 1793-1807.
  3. Smith, J. J., Schneider, G., Suslov, D., Oschwald, M. and Haidn, O., 2007, "Steady-State High Pressure LOx/H2 Rocket Engine Combustion," Aerospace Science and Technology, Vol. 11, pp. 39-47. https://doi.org/10.1016/j.ast.2006.08.007
  4. Lieuwen, T., Chang, M. and Amato, A., 2003, "Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations," Combustion and Flame, Vol. 160, pp. 1311-1314.
  5. Ballester, J. and Garcia-Armingol, T., 2010, "Diagnostic Techniques for the Monitoring and Control of Practical Flames," Progress in Energy and Combustion Science, Vol. 36, pp. 375-411. https://doi.org/10.1016/j.pecs.2009.11.005
  6. Eckbreth, A., 1988, "Laser Diagnostics for Combustion Temperature and Species," Abacus Press, Cambridge MA.
  7. Docquier, N. and Candel, S., 2002, "Combustion Control and Sensors: a Review," Progress in Energy and Combustion Science, Vol. 28, pp. 107-150. https://doi.org/10.1016/S0360-1285(01)00009-0
  8. Nori, V. N., 2008, "Modeling and Analysis of Chemiluminescence Sensing for Syngas, Methane and Jet-A Combustion," Ph.D. Dissertation, Georgia Institute of Technology.
  9. Yu, K. H., Trouve, A. and Daily, J. W., 1991, "Lowfrequency Pressure Oscillations in a Model Ramjet Combustor," Journal of Fluid Mechanics, Vol. 232, pp. 47-72. https://doi.org/10.1017/S0022112091003622
  10. Samaniego, J. M., Yip, B., Poinsot, T. and Candel, S., 1993, "Low-Frequency Combustion Instability Mechanisms in a Side-Dump Combustor," Combustion and Flame, Vol. 94, pp. 363-380. https://doi.org/10.1016/0010-2180(93)90120-R
  11. Richards, G. A., Janus, M. and Robey, E. H., 1998, "Control of Flame Oscillations with Equivalence Ratio Modulation," Journal of Propulsion and Power, Vol. 15, pp. 232-240.
  12. Broda, J. C., Seo, S., Santoro, R. J., Shirhattikar, G. and Yang, V., 1998, "An Experimental Study of Combustion Dynamics of a Premixed Swirl Injector," Twenty-Seventh Symposium (International) on Combustion, pp. 1849-1856.
  13. Lee, S.-Y., Seo, S., Broda, J. C., Pal, S. and Santoro, R. J., 2000, "An Experimental Estimation of Mean Reaction Rate and Flame Structure during Combustion Instability in a Lean Premixed Gas Turbine Combustor," Proceedings of the Combustion Institute, Vol. 28, pp. 775-782. https://doi.org/10.1016/S0082-0784(00)80280-5
  14. Docquier, N., Belhalfaoui, S., Lacas, F., Darabiha, N. and Rolon, C., 2000, "Experimental and Numerical Study of Chemiluminescence in Methane/Air High-Pressure Flames for Active Control Applications," Proceedings of the Combustion Institute, Vol. 28, pp. 1765-1774. https://doi.org/10.1016/S0082-0784(00)80578-0
  15. Krishnamachari, S. L. N. G. and Broida, H. P., 1961, "Effect of Molecular Oxygen on the Emission Spectra of Atomic Oxygen-Acetylene Flames," The Journal of Chemical Physics, Vol. 34, No. 5, pp. 1709-1711. https://doi.org/10.1063/1.1701067
  16. Docquier, N., Belhalfaoui, S., Lacas, F., Darabiha, N. and Rolon, C., 2000, "Experimental and Numerical Study of Chemiluminescence in Methane/Air High-Pressure Flames for Active Control Applications," Proceedings of the Combustion Institute, Vol. 28, pp. 1765-1774. https://doi.org/10.1016/S0082-0784(00)80578-0
  17. Kojima, J., Ikeda, Y. and Nakajima, T., 2005, "Basic Aspects of OH(A), CH(A), and C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane-Air Premixed Flames," Combustion and Flame, Vol. 140, pp.34-45. https://doi.org/10.1016/j.combustflame.2004.10.002
  18. Nori, V. N. and Seitzman, J. M., 2009, "$CH^*$ Chemiluminescence Modeling for Combustion Diagnostics," Proceedings of the Combustion Institute, Vol. 32, pp. 895-903. https://doi.org/10.1016/j.proci.2008.05.050
  19. Orain, M. and Hardalupas, Y., 2010, "Effect of Fuel Type on Equivalence Ratio Measurements using Chemiluminescence in Premixed Flames," Comptes Rendus Mecanique, Vol. 338, pp. 241-254. https://doi.org/10.1016/j.crme.2010.05.002
  20. Sheen, H. J., Chen, W. J., and Jeng, S. Y., 1996, "Correlation of Swirl Number for a Radial-Type Swirl Generator," Experimental Thermal and Fluid Science, Vol. 12, No. 4, pp. 444-451. https://doi.org/10.1016/0894-1777(95)00135-2
  21. Lee, H. and Seo, S., 2014, "Experimental Study on Emission Spectra of Kerosene Swirl Combustion," Asia Joint Conference on Propulsion and Power 2014(AJCPP 2014), pp. 1-4.
  22. Morrel, M. R., Seitzman, J. M., Wilensky. M., Lubarsky, E., Lee, J. and Zinn, B., 2001, "Interpretation of Optical Emission for Sensors in Liquid Fueled Combustors," AIAA 39th Aerospace Sciences Meeting, pp. 557-584.
  23. Panoutsos, C. S., Hardalupas, Y. and Taylor, A. M. K. P., 2009, "Numerical Evaluation of Equivalence Ratio Measurement using OH* and CH* Chemiluminescence in Premixed and Non-premixed Methane-Air Flames." Combustion and Flame, Vol. 156, pp. 273-291. https://doi.org/10.1016/j.combustflame.2008.11.008