DOI QR코드

DOI QR Code

A Study on the Mill Scale Pretreatment and Magnetite Production for Phosphate Adsorption

인 흡착을 위한 Mill Scale 전처리 및 Magnetite 제조 연구

  • Chun, Hyuncheol (Department of Environmental Engineering, Daegu University) ;
  • Choi, Younggyun (Department of Environmental Engineering, Daegu University)
  • Received : 2015.03.18
  • Accepted : 2015.04.30
  • Published : 2015.04.30

Abstract

In steel factory, hot roller cleaning process produces a lot of iron oxide particles called as mill scale. Major components of these particles are wustite (FeO), magnetite ($Fe_3O_4$), and hematite ($Fe_2O_3$). In this study, we tried to produce pure magnetite from the mill scale because of the largest phosphate adsorption capacity of the magnetite. The mill scale was treated with acid (HCl+$H_2O_2$), base (NaOH), and acid-base ($H_2SO_4$+NaOH). Batch adsorption tests showed the acid and/or base treatment could increase the phosphate adsorption capacity of the iron oxides from 0.28 to over 3.11 mgP/g. Magnetite, which could be obtained by acid and base treatment of the mill scale, showed the best adsorption capacity. From the kinetic analysis, both Freundlich and Langmuir isotherm well described the phosphate adsorption behavior of the magnetite. In Langmuir model, maximum phosphate adsorption capacity was found to be 5.1 mgP/g at $20^{\circ}C$.

철강공장의 열연공정에서 발생하는 폐부산물인 mill scale을 원료로 하여 인흡착에 효율적인 무기흡착제인 magnetite를 생산하고자 하였다. Mill scale의 주요 구성성분은 wustite (FeO), magnetite (FeO), hematite (FeO)였으며, 산처리를 수행할 경우 대부분의 wustite가 magnetite와 hematite로 전환되었다. Mill scale의 산처리는 HCl과 $H_2O_2$를 이용하여, 염기처리는 NaOH 이용하여, 산-염기 복합처리는 $H_2SO_4$와 NaOH를 이용하여 수행하였다. Oil 제거 및 DI water로 rinsing만 한 경우, 인 흡착용량은 0.28 mgP/g으로 나타난 반면, 염기처리를 한 경우 0.68, 산처리를 한 경우 1.19 mgP/g으로 인 흡착용량이 증가하였다. 산-염기 복합처리 과정을 통해 단일상의 magnetite 입자를 얻을 수 있었으며, 이 입자의 인 흡착용량은 3.11 mgP/g 이상인 것으로 파악되었다. 산화철의 인 흡착에 대한 동력학적 특성 분석결과 Freundlich와 Langmuir 두 등온 흡착모델 모두 magnetite의 인 흡착 거동을 잘 모사하였다. Freundlich 모델의 흡착능(K)과 흡착강도(1/n)를 조사한 결과, 온도가 증가할수록 강한 흡착능을 보이는 것으로 나타났다. Langmuir 모델 적용결과 최대 흡착용량은 $20^{\circ}C$에서 5.1 mgP/g인 것으로 파악되었다.

Keywords

References

  1. Lee, B., Park, N. B., Tian, D. J., Heo, T. Y. and Jun, H. B., "Nitrogen and Phosphorus Removal Efficiency of Aluminum Usage in DEPHANOX Process," J. Korean Soc. Environ. Eng., 34(5), 295-303(2012). https://doi.org/10.4491/KSEE.2012.34.5.295
  2. Monclus, H., Sipma, J., Ferrero, G., Roda, L. R. and Comas, J., "Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal," Bio Resour. Technol., 101(11), 3984-3991(2010). https://doi.org/10.1016/j.biortech.2010.01.038
  3. Barat, R., Montoya, T., Seco, A. and Ferrer, J., "Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems," Water Res., 45(12), 3744-3752(2011). https://doi.org/10.1016/j.watres.2011.04.028
  4. Nowack, B. and Stone, A. T., "Competitive adsorption of phosphate and phosphonates onto goethite," Water Res., 40 (11), 2201-2209(2006). https://doi.org/10.1016/j.watres.2006.03.018
  5. Sousa, A. F., Braga, T. P., Gomes, E. C. C., Valentini, A. and Longhinotti, E., "Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide," Chem. Eng. J., 210, 143-149(2012). https://doi.org/10.1016/j.cej.2012.08.080
  6. Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K. and Kawakita, H., "Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium," Bioresour. Technol., 99(18), 8685-8690(2008). https://doi.org/10.1016/j.biortech.2008.04.015
  7. Lee, S. H., Lee, K. Y., Lee, S. H. and Choi, Y. S., "Phosphate adsorption characteristics of zirconium mesostructure synthesized under different conditions," J. Korean Soc. Environ. Eng., 28(6), 583-587(2006).
  8. Cheung, K. and Venkitachalam, T., "Improving phosphate removal of sand infiltration system using alkaline fly ash," Chemosphere, 41(1), 243-249(2000). https://doi.org/10.1016/S0045-6535(99)00417-8
  9. Kostura, B., Kulveitova, H. and Lesko, J., "Blast furnace slags as sorbents of phosphate from water solutions," Water Res., 39(9), 1795-1802(2005). https://doi.org/10.1016/j.watres.2005.03.010
  10. James, B. R., Rabenhorst, M. C. and Frigon, G. A., "Phosphorus sorption by peat and sand amended with iron oxides or steel wool," Water Environ. Res., 64(5), 699-705(1992). https://doi.org/10.2175/WER.64.5.6
  11. Kim, J. H., Lim, C. S., Kim,. K. Y., Kim, D. K., Lee, S. I. and Kim, J. S., "Application of adsorption characteristic of ferrous iron waste to phosphate removal from municipal wastewater," Korean J. Environ. Agri., 27(3), 231-238(2008). https://doi.org/10.5338/KJEA.2008.27.3.231
  12. Anderson, N. J., Eldridge, R. J., Kolarik, L. O., Swinton, E. A. and Weiss, D. E., "Colour and turbidity removal with reusable magnetic particles-I. Use of magnetic cation exchange resins to introduce aluminiumions," Water Res., 14, 959-966(1980). https://doi.org/10.1016/0043-1354(80)90141-4
  13. Anderson, N. J., Bolto, B. A., Eldridge, R. J., Kolarik, L. O. and Swinton, E. A., "Colour and turbidity removal with reusable magnetic particles-II. Coagulation with magnetic polymer composites," Water Res., 14, 967-973(1980). https://doi.org/10.1016/0043-1354(80)90142-6
  14. Kolarik, L. O., "Colour and turbidity removal with reusable magnetite particles-IV. Alkali activated magnetite-A new solid. Reusable coagulant-adsorbent," Water Res., 17, 141-147(1983). https://doi.org/10.1016/0043-1354(83)90093-3
  15. Daou, T. J., Begin-Colin, S., Greneche, J. M., Thomas, F., Derory, A., Bernhardt, P., Legare, P. and Pourroy, G., "Phosphate adsorption properties of magnetite-based nanoparticles," Chem. Mater., 19(18), 4494-4505(2007). https://doi.org/10.1021/cm071046v
  16. Chen, R. and Yuen, W., "Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms," Oxidat. Metals, 56(1-2), 89-118(2001). https://doi.org/10.1023/A:1010395419981
  17. Velichkova, F. C. and Julcour, L., "Heterogeneous Fenton oxidation of paracetamol using iron oxide (nano)particles," J. Environ. Chem. Eng., 1(4), 1214-1222(2013). https://doi.org/10.1016/j.jece.2013.09.011
  18. Minegishi, T., Asaki, Z., Higuchi, B. and Kondo, Y., "Oxidation of ferrous sulfate in weakly acidic solution by gas bubbling," Metal. Transact. B, 14(1), 17-24(1983). https://doi.org/10.1007/BF02654046
  19. Eom, T. H., Tuan, H. T., Kim, S. J. and Suhr, D. S., "Synthesis of Iron Oxide Using Ferrous and Ferric Sulfate," Korean J. Mater. Res., 20(6), 301-306(2010). https://doi.org/10.3740/MRSK.2010.20.6.301
  20. Schwertmann, U. and Cornell, R. M., Iron Oxides in the Laboratory, 2nd ed., Wiley-VCH, Weinheim, Germany, pp. 5-18(2000).
  21. Panasiuk, O., Phosphorus removal and recovery from wastewater using magnetite, MS Thesis, Royal Institute of Technology, Stockholm(2010).
  22. Weber, J. and Miller, C., "Organic chemical movement over and through soil," Reactions and movement of organic chemicals in soils, Sawhney, B. L. and Brown, K. (Eds.), Soil Science Society of America and American Society of Agronomy, pp. 305-334(1989).

Cited by

  1. Effects of alkali species and concentration on the size distribution of the co-precipitated magnetite particles used for phosphate adsorption vol.30, pp.4, 2016, https://doi.org/10.11001/jksww.2016.30.4.409