DOI QR코드

DOI QR Code

A Study on the Application of Simulation-based Simplified PMV Regression Model for Indoor Thermal Comfort Control

실내 온열환경 쾌적 제어를 위한 단순 PMV 회귀모델의 적용에 관한 시뮬레이션 연구

  • Kim, Sang-Hun (Graduate School of Energy Environment, Seoul National University of Science and Technology) ;
  • Yun, Sung-Jun (Architecture Team, Parsons Brinckerhoff Korea) ;
  • Chung, Kwang-Seop (School of Architecture, Seoul National University of Science and Technology)
  • 김상훈 (서울과학기술대학교 에너지환경대학원) ;
  • 윤성준 (파슨스브링커호프코리아 건축팀) ;
  • 정광섭 (서울과학기술대학교 건축학부)
  • Received : 2015.02.02
  • Accepted : 2015.03.13
  • Published : 2015.03.31

Abstract

The PMV regression analysis was conducted for this model based on a database of the PMV variables. PMV regression model simplification was completed through sensitivity and data analysis. The simplified PMV regression model's and Fanger PMV model was confirmed through MAE and RMSE. And the EMS in EnergyPlus was used to establish a simplified PMV regression analysis-based thermal comfort control. Also, the thermal comfort controls based on simplified PMV model and the Fanger PMV model were applied to the building model, it was confirmed that both controls met the thermal comfort range in more than 90% of cases during the air conditioning period.

본 연구에서는 보정된 모델링 건물을 대상으로 PMV 변수에 대한 데이터베이스를 구축하였고, 다중회귀분석을 통하여 PMV 회귀모델을 도출하였다. PMV 회귀모델은 민감도 및 데이터 분석을 통하여 단순화하여 단순 PMV 회귀모델을 제시하였다. 단순 PMV 회귀모델과 Fanger PMV 모델에 대한 MAE 및 RMSE 검증을 통하여 단순 PMV 회귀모델이 Fanger PMV 모델을 대체할 수 있는 것으로 분석되었다. EnergyPlus의 EMS(Energy Management System)를 이용하여 보정된 모델링 건물에 PMV 회귀모델 제어를 적용하였다. 단순 PMV 회귀모델과 Fanger PMV 모델 제어의 온열 쾌적도를 비교한 결과, 두 제어 모두 공조기간 동안 약 90% 이상이 온열쾌적 범위를 만족하였고, 온열 쾌적 제어의 특징인 설정 PMV를 만족하는 설정온도에 의하여 제어되는 것으로 나타났다.

Keywords

References

  1. 윤동원, 강효석, 안병욱. 실내 온열환경 제어를 위한 PMV센서의 개발 및 적용성 평가연구, 대한설비공학회 논문집, 2003, 15권 10호, 870-878
  2. 문용준, 노광철, 오명도. 다중회귀분석을 통한 PMV 모델의 단순화, 대한설비공학회 논문집, 2007, 19권 11호, 761-769
  3. 김광호, 김병선. 소규모 유리외피 사무소 빌딩 사례를 통한 온열환경과 냉방부하 저감방안에 관한 연구, 대한건축학회 논문집, 2005, 21권 8호, 187-196
  4. 윤성준, 공동석, 박정민, 김두환, 허정호. 사무소 건물에서의 단순 PMV 회귀모델 기반 온열쾌적제어 적용방안 연구, 2013, 대한설비공학회 하계학술대회, 255-258
  5. Atthajariyakul, S. and Leephakpreedaz, T., 2005, Neural computing thermal comfort index for HVAC systems, Energy Conversion and Management, Vol. 46, Issues 15-16, pp. 2553-2565 https://doi.org/10.1016/j.enconman.2004.12.007
  6. Buratti, C., Ricciardi, P. and Vergoni, M., 2013, HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments, Applied Energy, Vol. 104, pp. 117-127 https://doi.org/10.1016/j.apenergy.2012.11.015
  7. Kosonen, R. and Tan, F., 2004, Assessment of productivity loss in air-condition buildings using PMV index, Energy and Buildings, Vol. 36, Issue 10, pp. 987-993 https://doi.org/10.1016/j.enbuild.2004.06.021
  8. Fanger, P. O., 1982, Thermal Comfort Analysis and Application in Environmental Engineering, McGraw-Hill Book Company
  9. ISO, 1994, ISO 7730:1994 Moderate thermal environmental- Determination of the PMV and PPD Indices and Specification of the conditions for Thermal Comfort, International Organization for Standardization
  10. U. S. Department of Energy Federal Energy Management Program, 2008, M&V Guide lines: Measurement and verification for federal Energy Projects Version 3.0

Cited by

  1. Prediction of Thermal Environment in a Large Space Using Artificial Neural Network vol.11, pp.2, 2018, https://doi.org/10.3390/en11020418
  2. Thermal Comfort, Energy and Cost Impacts of PMV Control Considering Individual Metabolic Rate Variations in Residential Building vol.11, pp.7, 2018, https://doi.org/10.3390/en11071767