DOI QR코드

DOI QR Code

Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactinexcreting Strains of Bacillus subtilis

  • Jia, Ke (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences) ;
  • Gao, Yu-Han (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences) ;
  • Huang, Xiao-Qin (Institute of Plant Protection, Sichuan Academy of Agricultural Sciences) ;
  • Guo, Rong-Jun (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences) ;
  • Li, Shi-Dong (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
  • Received : 2014.10.27
  • Accepted : 2015.02.07
  • Published : 2015.06.01

Abstract

Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of $0.96log_{10}ng/g$ to $2.39log_{10}ng/g$ was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of $2.91log_{10}ng/g$ to $3.36log_{10}ng/g$ at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field.

Keywords

References

  1. Ann, M. N., Cho, Y. E., Ryu, H. J., Kim, H. T. and Park, K. S. 2013. Growth promotion of tobacco plant by 3-hydroxy-2-butanone from Bacillus vallismortis EXTN-1. Kor. J. Pesti. Sci. 17:388-393. https://doi.org/10.7585/kjps.2013.17.4.388
  2. Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
  3. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319. https://doi.org/10.1104/pp.103.028712
  4. Bargabus, R. L., Zidack, N. K., Sherwood, J. W. and Jacobsen, B. J. 2002. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant Pathol. 61:289-298. https://doi.org/10.1006/pmpp.2003.0443
  5. Burgess, L. W., Knight, T. E., Tesoriero, L. and Phan, H. T. 2008. Diagnostic manual for plant diseases in Vietnam. ACIAR:Canberra 92-94 pp.
  6. Cao, Y., Zhang, Z. H., Ling, N., Yuan, Y. J., Zheng, X. Y., Shen, B. and Shen, Q. R. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 47:495-506. https://doi.org/10.1007/s00374-011-0556-2
  7. Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J. and Ongena, M. 2014. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant-Microbe Interact. 27:87-100. https://doi.org/10.1094/MPMI-09-13-0262-R
  8. Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H. and Shin, K. S. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223:47-51. https://doi.org/10.1016/S0378-1097(03)00329-X
  9. Copping, L. G. 2004. The manual of biocontrol agents. Third edition of the biopesticide manual. BCPC (British Crop Protection Council), UK.
  10. Fan, B., Chen, X. H., Budiharjo, A., Bleiss, W.,Vater, J. and Borriss, R. 2011. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151:303-311. https://doi.org/10.1016/j.jbiotec.2010.12.022
  11. Farag, M. A., Ryu, C. M., Sumner, L. W. and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262-2268. https://doi.org/10.1016/j.phytochem.2006.07.021
  12. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  13. Geng, W. Y., Guo, R. J., Li, S. D. and Xu, X. H. 2011. Identification of the SCAR markers for detection of biocontrol Bacillus strains B006 and BH1 in soil. Chin. J. Biol. Control 27:233-240.
  14. Guo, R. J., Li, S. D., Zhang, J., Zhang, X., Mu, G. Y. and Wang, Z. Y. 2010. Characterization of Bacillus strains screened via nutritional competition for biocontrol of soybean root rot disease. Acta Phytopathol. Sin. 40:307-314.
  15. Hao, B. Q., Ma, L. P. and Qiao, X. W. 2010. Colonization ability of plant growth promoting Bacillus B96-II-gfp labeled with GFP. Chin. J. Eco-Agric. 8:861-865.
  16. Henry, G., Deleu, M., Jourdan, E., Thonart, P. and Ongena, M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 13:1824-1837. https://doi.org/10.1111/j.1462-5822.2011.01664.x
  17. Heydari, A. and Pessarakli, M. 2010. A review on biological control of fungal plant pathogens using microbial antagonistits. J. Biol. Sci. 10:273-290. https://doi.org/10.3923/jbs.2010.273.290
  18. Jenkins S. F. Jr. and Wehner T. C. 1983. Occurrence of Fusarium oxysporum f. sp. cucumerinum on greenhouse-grown Cucumis sativus seed stocks in North Carolina. Plant Dis. 67:1024-1025. https://doi.org/10.1094/PD-67-1024
  19. Jia, K., Guo, R. J. and Li, S. D. 2013. Characteristics of surfactin mutants of Bacillus subtilis B006 and their suppressing ability against cucumber Fusarium wilt. Chin. J. Biol. Control 29:538-546.
  20. Jiang, H., Cao, S., Wang, L. J., Wu, X. H. and Yang, L. Y. 2012. Research progress on cucumber Fusarium wilt and its integrated control. Chin. Plant Prot. 32:13-17.
  21. Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P. and Ongena, M. 2009. Insights into the defenserelated events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant-Microbe Interact. 22:456-468. https://doi.org/10.1094/MPMI-22-4-0456
  22. Jung, J., Yu, K. O., Ramzi, A. B., Choe, S. H., Kim, S. W. and Han, S. O. 2012. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol. Bioeng. 109:2349-2356. https://doi.org/10.1002/bit.24524
  23. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256. https://doi.org/10.1094/MPMI-19-0250
  24. Keel, C., Voisard, C., Berling, C. H., Kahir, G. and Defago, G. 1989. Iron sufficiency is a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584-589. https://doi.org/10.1094/Phyto-79-584
  25. Kilian, M., Steiner, U., Krebs, B., Junge, H., Schmiedeknecht, G. and Hain, R. 2000. $FZB24^{(R)}$ Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Naehrichten Bayer 53:72-93.
  26. Kinsella, K., Schulthess, C. P., Morris, T. F. and Stuart, J. D. 2009. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem. 41:374-379. https://doi.org/10.1016/j.soilbio.2008.11.019
  27. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  28. Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
  29. Li, B. Q., Lu, X. Y., Guo, Q. G., Qian, C. D., Li, S. Z. and Ma, P. 2010. Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1. Sci. Agric. Sin. 43:3547-3554.
  30. Li, D. Q., Chen, Z. Y., Liu, Y. F. and Liu,Y. Z. 2006. Screening of mutation high-yielding biocontrol bacterium Bs-916 by ion implantation and the effect of inhibiting pathogens and control disease. Acta Phytophyl. Sin. 33:141-144.
  31. Li, D. Q., Nie, F. Y., Wei, L. H., Wei, B. Q. and Chen, Z. Y. 2007. Screening of high-yielding biocontrol bacterium Bs-916 mutant by ion implantation. Appl. Microbiol. Biot. 75:1401-1408. https://doi.org/10.1007/s00253-007-0951-7
  32. Li, L., Yang, J. B., Li, J., Wu, L. J., Wu, J. D., Yu, Z. L. and Luo, N. J. 1994. Research on damage of ion beam irradiated pUC18 plasmid DNA. J. Anhui Agric. Sci. 22:300-303.
  33. Liu, J., Zhou, T., He, D., Li, X. Z., Wu, H. J., Liu, W. Z. and Gao, X. W. 2011. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J. Mol. Microbiol. Biotechnol. 20:43-52. https://doi.org/10.1159/000323501
  34. Lievens, B., Claes, L., Vakalounakis, D. J., Vanachter, A. C. and Thomma, B. P. 2007. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environ. Microbiol. 9:2145-2161. https://doi.org/10.1111/j.1462-2920.2007.01329.x
  35. Martinez, R., Aguilar, M. I., Guirado, M. L., Alvarez, A. and Gomez, J. 2003. First report of fusarium wilt of cucumber caused by Fusarium oxysporum in Spain. Plant Pathol. 6:410pp.
  36. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P. and Ongena, M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 29:176-191.
  37. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  38. Owen, J. H. 1955. Fusarium wilt of cucumber. Phytopathology 45:435-439.
  39. Owen, J. H. 1959. Fusarium wilt of cucumber. Circular 194 (University of Florida, Agricultural extension service). http://ufdc.ufl.edu/UF00084448/00001/1j.
  40. Park, K. S., Kloepper, J. W. and Ryu, C. M. 2008. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18:1095-1100.
  41. Park, S. Y., Choi, S. K., Kim, J., Oh, T. K. and Park, S. H. 2012. Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene. Appl. Environ. Microbiol. 78:4194-4199. https://doi.org/10.1128/AEM.07912-11
  42. Raaijmakers, J. M., De Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  43. Robertson, J. B., Gocht, M., Marahiel, M. A. and Zuber, P. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86:8457-8461. https://doi.org/10.1073/pnas.86.21.8457
  44. Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440. https://doi.org/10.1094/MPMI-20-4-0430
  45. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2003. Bacterial volatiles induce systemic resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
  46. Song, G. C. and Ryu, C. M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14:9803-9819. https://doi.org/10.3390/ijms14059803
  47. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  48. Thomashow, L. S. and Weller, D. M. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannonas graminis var. tritici. J. Bacteriol. 170:3499-3508. https://doi.org/10.1128/jb.170.8.3499-3508.1988
  49. Vakalounakis, D. J. 1996. Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov.. Plant Dis. 80:313-316. https://doi.org/10.1094/PD-80-0313
  50. Vakalounakis, D. J., Wang, Z., Frakiadakis, G. A., Skaracis, G. N. and Li, D. B. 2004. Characterization of Fusarium oxysporum isolates obtained from cucumber (Cucumis sativus) in China by pathogenicity, VCGs and RAPD. Plant Dis. 88:645-649. https://doi.org/10.1094/PDIS.2004.88.6.645
  51. Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  52. Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q. and Zhang, R. 2013. Contribution of Bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 79:808-815. https://doi.org/10.1128/AEM.02645-12
  53. Yang, Q. Y., Guo, R. J., Li, S. D. and Xu, X. H. 2012. Antifungal activities and principal component analysis of Bacillus subtilis B006 against Fusarium oxysporum f. sp. cucumerinum and Phytophthora capsici. Chin. J. Biol. Control 8:235-242.
  54. Yang, Q. Y., Jia, K., Geng, W. Y., Guo, R. J. and Li, S. D. 2014. Management of cucumber wilt disease by Bacillus subtilis B006 through suppression of Fusarium oxysporum f. sp. cucumerinum in rhizosphere. Plant Pathol. J. 13:160-166. https://doi.org/10.3923/ppj.2014.160.166
  55. Zhao, X. J. and Wu, D. H. 2001. Studies on techniques of in vitro evaluation of fusaric wilt resistance in cucumber. J. South. Chin. Agric. Univ. 22:41-45.

Cited by

  1. Quantification of antifungal lipopeptide gene expression levels in Bacillus subtilis B1 during antagonism against sapstain fungus on rubberwood vol.96, 2016, https://doi.org/10.1016/j.biocontrol.2016.02.007
  2. Isolation and identification of biocontrol agentStreptomyces rimosusM527 againstFusarium oxysporumf. sp.cucumerinum vol.56, pp.8, 2016, https://doi.org/10.1002/jobm.201500666
  3. Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis pp.1476-5535, 2018, https://doi.org/10.1007/s10295-018-2076-7
  4. B6, a Rhizobacterium That Can Control Plant Diseases vol.6, pp.12, 2018, https://doi.org/10.1128/genomeA.00182-18