DOI QR코드

DOI QR Code

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong (Graduate School of Life and Environmental Sciences, University of Tsukuba) ;
  • Lee, Jeongeun (Graduate School of Life and Environmental Sciences, University of Tsukuba) ;
  • Lee, Chan-Hui (Graduate School of Biotechnology, Kyung Hee University) ;
  • Woo, Su Young (Department of Environmental Horticulture, The University of Seoul) ;
  • Kang, Hoduck (Department of Biological and Environmental Science, Dongguk University) ;
  • Seo, Sang-Gyu (Department of Environmental Horticulture, The University of Seoul) ;
  • Kim, Sun-Hyung (Department of Environmental Horticulture, The University of Seoul)
  • Received : 2014.11.25
  • Accepted : 2015.02.08
  • Published : 2015.06.01

Abstract

Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

Keywords

References

  1. Adams, D. J. 2004. Fungal cell wall chitinases and glucanases. Microbiology 150:2029-2035. https://doi.org/10.1099/mic.0.26980-0
  2. Agrios, G. N. 2005. Plant Pathology, 5th edn. Elsevier Academic Press, Oxford UK.
  3. Defago, G. 1993. 2,4-Diacetylphloroglucinol, a promising compound in biocontrol. Plant Pathol. 42:311-312. https://doi.org/10.1111/j.1365-3059.1993.tb01506.x
  4. Duijff, B. J., Bakker, P. A. H. M. and Schippers, B. 1994. Suppression of fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci. Technol. 4:279-88. https://doi.org/10.1080/09583159409355336
  5. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129
  6. Kim, S.-H. and Hamada, T. 2005. Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L.) Lam. Biotech. Lett. 27:1841-1845. https://doi.org/10.1007/s10529-005-3891-2
  7. Kader, J. C. 1996. Lipid transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:627-654. https://doi.org/10.1146/annurev.arplant.47.1.627
  8. Kim, Y.-H., Kim, C. Y., Song, W.-K., Park, D.-S., Kwon, S.-Y., Lee, H.-S., Bang, J.-W. and Kwak, S.-S. 2008. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867-881. https://doi.org/10.1007/s00425-007-0663-3
  9. Lagrimini, L. M., Burkhart, W., Moyer, M. and Rothstein, S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. USA 84:7542-7546. https://doi.org/10.1073/pnas.84.21.7542
  10. Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H. J. and Van Pee, K. H. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci. 56:688-695. https://doi.org/10.1002/1526-4998(200008)56:8<688::AID-PS186>3.0.CO;2-V
  11. Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal hydrolases in pea tissue : II. Inhibition of fungal growth by combinations of chitinase and beta-1,3-glucanase. Plant Physiol. 88:936-942. https://doi.org/10.1104/pp.88.3.936
  12. Moyne, A. L., Cleveland, T. E. and Tuzun, S. 2004. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett. 234:43-49. https://doi.org/10.1111/j.1574-6968.2004.tb09511.x
  13. Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Cristophersen, C., Givskov, M. and Sorensen, J. 2002. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizophere. Appl. Environ. Microbiol. 68:3416-3423. https://doi.org/10.1128/AEM.68.7.3416-3423.2002
  14. Park, K. S. and Kloepper, J. W. 2000. Activation of PR-1a promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Control 18:2-9. https://doi.org/10.1006/bcon.2000.0815
  15. Passardi, F., Penel, C. and Dunand, C. 2004. Performing the paradoxical:how plant peroxidases modify the cell wall. Trends Plant Sci. 9:534-540. https://doi.org/10.1016/j.tplants.2004.09.002
  16. Pieterse, C. M. J , Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and Van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  17. Raaijmakers, J. M., Vlami, M. and De Souza, J. T. 2002. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537-547. https://doi.org/10.1023/A:1020501420831
  18. Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S. and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80:891-894. https://doi.org/10.1094/PD-80-0891
  19. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  20. Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. https://doi.org/10.1104/pp.103.026583
  21. Sels, J., Mathys, J. De Coninck, B. M., Cammue, B. P. and De Bolle, M. F. 2008. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem. 46:941-950. https://doi.org/10.1016/j.plaphy.2008.06.011
  22. Sharifi-Tehrani, A., Zala, M., Natsch, A., Moenne-Loccoz, Y. and Defago, G. 1998. Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol. 104:631-643. https://doi.org/10.1023/A:1008672104562
  23. Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59:223-233. https://doi.org/10.1006/pmpp.2001.0364
  24. Song, J. Y., Kim, H. A., Kim, J.-S., Kim, S.-Y., Jeong, H., Kang, S. G., Kim, B. K., Kwon, S.-K., Lee, C. H., Yu, D. S., Kim, B. K., Kim, S.-H., Kwon, S. Y. and Kim, J. F 2012. Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain JS. J. Bacteriol. 194:3760-3761. https://doi.org/10.1128/JB.00676-12
  25. Van Loon, L. C., Rep, M. and Pieterse, C. M. 2006. Significance of inducible defense related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  26. Van Loon, L. C. and Van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97. https://doi.org/10.1006/pmpp.1999.0213
  27. Vespermann, A., Kai, M. and Piechulla, B. 2007. Rhizobacterial Volatiles Affect the Growth of Fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639-5641. https://doi.org/10.1128/AEM.01078-07
  28. Yedidia, I., Benhamou, N. and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65:1061-1070.
  29. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487

Cited by

  1. A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor vol.6, pp.1, 2016, https://doi.org/10.1007/s13205-016-0408-8
  2. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments vol.8, 2017, https://doi.org/10.3389/fphys.2017.00667
  3. Gene expression and localization of a β-1,3-glucanase of Lotus japonicus vol.129, pp.4, 2016, https://doi.org/10.1007/s10265-016-0811-6
  4. Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.] vol.416, pp.1-2, 2017, https://doi.org/10.1007/s11104-017-3195-z
  5. Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots vol.8, pp.7, 2016, https://doi.org/10.1039/C5MT00264H
  6. The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach pp.1432-0614, 2019, https://doi.org/10.1007/s00253-018-9433-3
  7. Changes in Root Exudates and Root Proteins in Groundnut–Pseudomonas sp. Interaction Contribute to Root Colonization by Bacteria and Defense Response of the Host pp.1435-8107, 2018, https://doi.org/10.1007/s00344-018-9868-x
  8. Biofilm formation and regulation of salicylic acid-inducible genes expression in Arabidopsis by Algerian indigenous bacteria from wheat and potatoes rhizospheres in semi-arid Sétif region vol.200, pp.9, 2018, https://doi.org/10.1007/s00203-018-1556-5