DOI QR코드

DOI QR Code

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Received : 2014.06.02
  • Published : 2015.05.31

Abstract

The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

Keywords

References

  1. D. F. Anderson and A. Badawi, On $\phi$-Prufer rings and $\phi$-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
  2. D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math. 32 (1980), no. 2, 362-384. https://doi.org/10.4153/CJM-1980-029-2
  3. D. F. Anderson and M.Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  4. D. F. Anderson and M. Zafrullah, Almost Bezout domains, J. Algebra 142 (1991), no. 2, 285-309. https://doi.org/10.1016/0021-8693(91)90309-V
  5. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addition-Wesley Publishing Company, 1969.
  6. A. Badawi, On divided rings and $\phi$-pseudo-valuation rings, Commutative ring theory (Fes, 1995), 57-67, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997.
  7. A. Badawi, On $\phi$-pseudo-valuation rings, in Advances in Commutative Ring Theory, (Fez, Morocco 1997), 101-110, Lecture Notes Pure Appl. Math. 205, Basel, 1999.
  8. A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
  9. A. Badawi, On $\phi$-pseudo-valuation rings II, Houston J. Math. 26 (2000), no. 3, 473-480.
  10. A. Badawi, On $\phi$-chained rings and $\phi$-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
  11. A. Badawi, On Nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
  12. A. Badawi, On pseudo almost valuation domains, Comm. Algebra 35 (2007), no. 4, 1167-1181. https://doi.org/10.1080/00927870601141951
  13. A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Lecture Notes Pure Appl. Math. 185, 57-67, Marcel Dekker, New York/Basel, 1997.
  14. G. W. Chang, Generalizations of pseudo-valuation rings, Commutative rings, 15-24, Nova Sci. Publ., Hauppauge, NY, 2002.
  15. D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353-363. https://doi.org/10.2140/pjm.1976.67.353
  16. J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. https://doi.org/10.2140/pjm.1978.75.137
  17. J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains II, Houston J. Math. 4 (1978), no. 2, 199-207.
  18. I. Kaplansky, Commutative Rings, Revised Edition, Univ. Chicago Press, Chicago, 1974.