DOI QR코드

DOI QR Code

AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS

  • Ku, Cheng Yeaw (Department of Mathematics National University of Singapore) ;
  • Wong, Kok Bin (Institute of Mathematical Sciences University of Malaya)
  • Received : 2014.07.01
  • Published : 2015.05.31

Abstract

Let $\mathbb{N}_0$ be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)=\{(x_1,x_2,{\cdots},x_l){\in}\mathbb{N}^l_0\;:\;x_1+x_2+{\cdots}+x_l=n\}$. For any element $u=(u_1,u_2,{\cdots},u_l){\in}P(n,l)$, denote its ith-coordinate by u(i), i.e., $u(i)=u_i$. A family $A{\subseteq}P(n,l)$ is said to be t-intersecting if ${\mid}\{i:u(i)=v(i)\}{\mid}{\geq}t$ for all $u,v{\epsilon}A$. A family $A{\subseteq}P(n,l)$ is said to be trivially t-intersecting if there is a t-set T of $[l]=\{1,2,{\cdots},l\}$ and elements $y_s{\in}\mathbb{N}_0(s{\in}T)$ such that $A=\{u{\in}P(n,l):u(j)=yj\;for\;all\;j{\in}T\}$. We prove that given any positive integers l, t with $l{\geq}2t+3$, there exists a constant $n_0(l,t)$ depending only on l and t, such that for all $n{\geq}n_0(l,t)$, if $A{\subseteq}P(n,l)$ is non-trivially t-intersecting, then $${\mid}A{\mid}{\leq}(^{n+l-t-l}_{l-t-1})-(^{n-1}_{l-t-1})+t$$. Moreover, equality holds if and only if there is a t-set T of [l] such that $$A=\bigcup_{s{\in}[l]{\backslash}T}\;A_s{\cup}\{q_i:i{\in}T\}$$, where $$A_s=\{u{\in}P(n,l):u(j)=0\;for\;all\;j{\in}T\;and\;u(s)=0\}$$ and $$q_i{\in}P(n,l)\;with\;q_i(j)=0\;fo\;all\;j{\in}[l]{\backslash}\{i\}\;and\;q_i(i)=n$$.

Keywords

References

  1. R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), no. 2, 125-136. https://doi.org/10.1006/eujc.1995.0092
  2. R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces - optimal anticodes, Adv. in Appl. Math. 20 (1998), no. 4, 429-449. https://doi.org/10.1006/aama.1998.0588
  3. C. Bey, On cross-intersecting families of sets, Graphs Combin. 21 (2005), no. 2, 161-168. https://doi.org/10.1007/s00373-004-0598-4
  4. P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), no. 1, 167-185. https://doi.org/10.1112/jlms/jdn062
  5. P. Borg, On t-intersecting families of signed sets and permutations, Discrete Math. 309 (2009), no. 10, 3310-3317. https://doi.org/10.1016/j.disc.2008.09.039
  6. P. Borg and F. C. Holroyd, The Erdos-Ko-Rado property of various graphs containing singletons, Discrete Math. 309 (2009), no. 9, 2877-2885. https://doi.org/10.1016/j.disc.2008.07.021
  7. F. Brunk and S. Huczynska, Some Erdos-Ko-Rado theorems for injections, European J. Combin. 31 (2010), 839-860. https://doi.org/10.1016/j.ejc.2009.07.013
  8. P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), no. 7, 881-890. https://doi.org/10.1016/S0195-6698(03)00078-7
  9. A. Chowdhury and B. Patkos, Shadows and intersections in vector spaces, J. Combin. Theory Ser. A 117 (2010), no. 8, 1095-1106. https://doi.org/10.1016/j.jcta.2009.10.010
  10. M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977), no. 3, 352-360. https://doi.org/10.1016/0097-3165(77)90009-7
  11. D. Ellis, Stability for t-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011), no. 1, 208-227. https://doi.org/10.1016/j.jcta.2010.04.005
  12. D. Ellis, E. Friedgut, and H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), no. 3, 649-682. https://doi.org/10.1090/S0894-0347-2011-00690-5
  13. K. Engel and P. Frankl, An Erdos-Ko-Rado theorem for integer sequences of given rank, European J. Combin. 7 (1986), no. 3, 215-220. https://doi.org/10.1016/S0195-6698(86)80025-7
  14. P. Erdos, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320. https://doi.org/10.1093/qmath/12.1.313
  15. P. Frankl, The Erdos-Ko-Rado theorem is true for n = ckt, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365-375, Colloq. Math. Soc. Jnos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
  16. P. Frankl and Z. Furedi, Nontrivial intersecting families, J. Combin. Theory Ser. A 41 (1986), no. 1, 150-153. https://doi.org/10.1016/0097-3165(86)90121-4
  17. P. Frankl and N. Tokushige, On r-cross intersecting families of sets, Combin. Probab. Comput. 20 (2011), no. 5, 749-752. https://doi.org/10.1017/S0963548311000289
  18. P. Frankl and R. M. Wilson, The Erdos-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986), no. 2, 228-236. https://doi.org/10.1016/0097-3165(86)90063-4
  19. C. Godsil and K. Meagher, A new proof of the Erdos-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009), no. 2, 404-414. https://doi.org/10.1016/j.ejc.2008.05.006
  20. A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384. https://doi.org/10.1093/qmath/18.1.369
  21. A. J. W. Hilton and C. L. Spencer, A graph-theoretical generalisation of Berges analogue of the Erdos-Ko-Rado theorem, Trends in Graph Theory, Birkhauser Verlag, Basel, Switzerland (2006), 225-242.
  22. F. C. Holroyd, C. Spencer, and J. Talbot, Compression and Erdos-Ko-Rado graphs, Discrete Math. 293 (2005), no. 1-3, 155-164. https://doi.org/10.1016/j.disc.2004.08.041
  23. F. C. Holroyd and J. Talbot, Graphs with the Erdos-Ko-Rado property, Discrete Math. 293 (2005), no. 1-3, 165-176. https://doi.org/10.1016/j.disc.2004.08.028
  24. G. Hurlbert and V. Kamat, Erdos-Ko-Rado theorems for chordal graphs and trees, J. Combin. Theory Ser. A 118 (2011), no. 3, 829-841. https://doi.org/10.1016/j.jcta.2010.11.017
  25. P. Keevash, Shadows and intersections: Stability and new proofs, Adv.Math. 218 (2008), no. 5, 1685-1703. https://doi.org/10.1016/j.aim.2008.03.023
  26. C. Y. Ku and I. Leader, An Erdos-Ko-Rado theorem for partial permutations, Discrete Math. 306 (2006), no. 1, 74-86. https://doi.org/10.1016/j.disc.2005.11.007
  27. C. Y. Ku and D. Renshaw, Erdos-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008), no. 6, 1008-1020. https://doi.org/10.1016/j.jcta.2007.12.004
  28. C. Y. Ku and K. B. Wong, On cross-intersecting families of set partitions, Electron. J. Combin. 19 (2012), no. 4, 9 pp.
  29. C. Y. Ku and K. B. Wong, On r-cross intersecting families of sets, Far East J. Math. Sci. 75 (2013), 295-300.
  30. C. Y. Ku and K. B. Wong, An analogue of the Erdos-Ko-Rado theorem for weak compositions, Discrete Math. 313 (2013), 2463-2468. https://doi.org/10.1016/j.disc.2013.07.012
  31. C. Y. Ku and K. B. Wong, An analogue of Hilton-Milner theorem for set partitions, J. Combin. Theory Ser. A 120 (2013), 1508-1520. https://doi.org/10.1016/j.jcta.2013.05.001
  32. C. Y. Ku and K. B. Wong, On r-cross t-intersecting families for weak compositions, preprint.
  33. C. Y. Ku and K. B. Wong, An Erdos-Ko-Rado theorem for permutations with fixed number of cycles, Electron. J. Combin. 21 (2014), no. 3, #P3.16.
  34. C. Y. Ku and T. W. H. Wong, Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin. 14 (2007), no. 3, 9 pp.
  35. B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004), no. 5, 657-673. https://doi.org/10.1016/j.ejc.2003.10.006
  36. Y.-S. Li and Jun Wang, Erdos-Ko-Rado-type theorems for colored sets, Electron. J. Combin. 14 (2007), no. 1, 9 pp.
  37. M. Matsumoto and N. Tokushige, The exact bound in the Erdos-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), no. 1, 90-97. https://doi.org/10.1016/0097-3165(89)90065-4
  38. A. Moon, An analogue of the Erdos-Ko-Rado theorem for the Hamming schemes H(n, q), J. Combin. Theory Ser. A 32 (1982), no. 3, 386-390. https://doi.org/10.1016/0097-3165(82)90054-1
  39. L. Pyber, A new generalization of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), no. 1, 85-90. https://doi.org/10.1016/0097-3165(86)90025-7
  40. N. Tokushige, A product version of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 118 (2011), no. 5, 1575-1587. https://doi.org/10.1016/j.jcta.2011.01.010
  41. J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), no. 2, 455-462. https://doi.org/10.1016/j.jcta.2010.09.005
  42. J. Wang and S. J. Zhang, An Erdos-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008), no. 5, 1112-1115. https://doi.org/10.1016/j.ejc.2007.07.002
  43. R. M. Wilson, The exact bound in the Erdos-Ko-Rado theorem, Combinatorica 4 (1984), no. 2-3, 247-257. https://doi.org/10.1007/BF02579226
  44. R. Woodroofe, Erdos-Ko-Rado theorems for simplicial complexes, J. Combin. Theory Ser. A 118 (2011), no. 4, 1218-1227. https://doi.org/10.1016/j.jcta.2010.11.022

Cited by

  1. A non-trivial intersection theorem for permutations with fixed number of cycles vol.339, pp.2, 2016, https://doi.org/10.1016/j.disc.2015.09.032
  2. The Hilton–Milner theorem for the distance-regular graphs of bilinear forms vol.515, 2017, https://doi.org/10.1016/j.laa.2016.11.016