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Abstract

An important problem in low-dose CT is the image quality degradation caused by photon starvation. There are a lot of algorithms in sinogram
domain or image domain to solve this problem. In view of strong self-similarity contained in the special sinusoid-like strip data in the sinogram
space, we propose a novel non-local filtering, whose average weights are related to both the image FBP (filtered backprojection) reconstructed
from restored sinogram data and the image directly FBP reconstructed from noisy sinogram data. In the process of sinogram restoration, we apply
a non-local method with smoothness parameters adjusted adaptively to the variance of noisy sinogram data, which makes the method much
effective for noise reduction in sinogram domain. Simulation experiments show that our proposed method by filtering in both image and
projection domains has a better performance in noise reduction and details preservation in reconstructed images.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Computed tomography (CT) has gained extensive applica-
tions in medical and industrial fields. However, high-dose
radiation increases the risk of cancer during the whole lifetime
of patients and operators. In order to reduce radiation exposure
caused by CT scanning, a simplest and most cost-effective way
is to deliver fewer X-ray to an object or directly lower the tube
current (mAs) as low as achievable in current CT systems.
Consequently, the image quality with low-dose CT imaging
will be severely degraded due to the photon starvation
[1,2].

To get satisfactory reconstructed images for medical appli-
cations, the filtered backprojection (FBP) reconstruction algo-
rithms based on projection restoration have been reported in

previous researches [3–10]. There are also some direct image
filtering algorithms in image domain [4,11,8], and mixed
filtering methods in both domains [12].
Lu et al. did an experimental study on noise properties of

X-ray CT sinogram data, and they found that the noise
approximatively obeys a non-stationary Gaussian distribution
[5]. Under this assumption, Cui et al. proposed a sinogram
restoration method based on energy minimization in [10],
which is a modified anisotropic diffusion with an adaptive
smoothness parameter, where the algorithm performs well in
both reducing noise and protecting the edge. However, there is
still some obvious artifacts in the reconstructed images, and
this is an iterative algorithm with low computational efficiency.
Although there have been lots of algorithms to deal with

images with Gaussian noise in previous studies, fewer have not
been used in CT images and sinogram data of low-dose CT
simultaneously. Recently, the non-local means filtering was
applied to medical image filtering for low-dose CT [7,11,12]
since it was first proposed by Buades et al. [13] for natural
image denoising.
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Inspired by the idea of algorithms based on sinogram
restoration such as the SR-NLM filtering [12], in order to deal
with stripe artifacts in reconstructed image for low-dose CT,
we develop a new adaptive nonlocal filtering for low-dose CT
in both image and projection domains. In projection domain,
its smoothness parameter is adjusted adaptively to the variance
of noisy sinogram data; while in image domain, the smooth-
ness parameter is adopted empirically, and the average weights
are determined by the image FBP reconstructed from both the
noisy sinogram and the non-local means restored sinogram.
In following experiments it will be verified that our proposed
approach has a better performance in noise reduction and
details preservation in reconstructed images.

We organize the remaining part of this paper as follows. In
Section 2, noise modeling and the main idea of the non-local
means algorithm are presented, respectively, and then our
proposed non-local means filtering based on sinogram restora-
tion is described in detail. In Section 3, simulated experiments
are implemented to verify the effectiveness and the feasibility
of our proposed algorithm. In Section 4, we give the conclu-
sion of this study.

2. Methods

2.1. Noise model

In this study, the calibrated and log-transformed projection data
are called sinogram. The previous studies [3,5] have shown that
low-dose sinogram data follow a non-stationary Gaussian dis-
tribution, with a non-linear relationship between the mean and the
variance of the sinogram data, which is described by

σ2i ¼ f inexpðpi=ηÞ; ð1Þ
where pi and σi denote the mean and standard deviation at
detector bin i, respectively, while fi and η are object-independent
parameters that are specified by different CT systems. At the
same time, it is shown that there are also some isolated points in
extremely noisy regions of the sinogram data in [6].

2.2. Non-local means filtering

The non-local means (NLM) algorithm was first proposed by
Buades et al. [13] for image denoising, which fully utilized the
large redundancy of natural images and has been successfully
applied to low-dose CT imaging [7,11,12]. Let Ω be a discrete grid
of image pixels and x ¼ fxijiAΩg be a noisy image, the denoised
intensity NLMðxiÞ at pixel i can be expressed by

NLM xið Þ ¼
P

jAΩwði; jÞxjP
jAΩwði; jÞ

; ð2Þ

where wði; jÞ is the average weight determined by the similarity
between the pixels i and j, which is adopted as

w i; jð Þ ¼ exp � ‖xðNiÞ�xðNjÞ‖22;a
h2

( )
; ð3Þ

where Ni and Nj are similarity windows centered at pixels i and j,
respectively; ‖ � ‖2;a denotes the Gaussian distance between two
similarity windows with a standard deviation a; h denotes a
smoothing factor that controls the decay of the exponential function
in Eq. (3). To reduce the computational burden and improve the
efficiency, the search window is always restricted to a proper local
neighborhood Si in Ω. The denominator of (2) is a normalizing
factor.

2.3. Our method

The projection of a single point in any object forms a
sinusoidal curve in the sinogram space. Because any object can
be approximated by a collection of points located in space, its
projection (sinogram) is obviously formed with a set of
overlapped sine curves in the sinogram space [2]. As Buades
et al. pointed that natural images have properties of sparsity
and self-similarity in [13,14], sinogram data in low-dose CT
are composed of special sinusoid-like strip data with same
stronger self-similarity among these strip data (for example,
see Fig. 2); FBP reconstructed images also have these proper-
ties, while noise does not have these special properties. So we
can make use of this point to restore data contaminated
seriously by noise. At the same time, we also find that we
can match similar points more exactly by using the recon-
structed image after sinogram restoration, which facilitates the
aim of removing noise and preserving important details.
In the NLM algorithm, three parameters, i.e. search window,

similarity window and smoothness parameter h, play an
important role, among which h is especially critical. A larger
h could cause too much smoothness in the data, while a
smaller h would leave the restored data with excessive noise.
In order to get a better weight in the NLM filtering, we develop
our algorithm along two directions, including modifying the
smoothness parameter h and the image intensity difference in
similar neighborhoods. In this study, in order to find an
appropriate h to smooth the data properly, ensuring the noise
largely removed and the details preserved at the same time, we
take two steps to adjust it both in the sinogram domain and in
the image domain, respectively. In the following, we denote
p¼ fpk; kAΩg the low-dose CT sinogram data, ~p ¼ f ~pk ;
kAΩg the restored sinogram data by the NLM filtering,
IFBPdirect ¼ fIFBPdirect;k ; kAΩg the image reconstructed from the noisy

sinogram p, and ~I
FBP
sinoNLM ¼ fIFBPsinoNLM;k; kAΩg the image recon-

structed from the NLM filtered sinogram data ~p. Both Idirect
FBP and

~I
FBP
sinoNLM are reconstructed by the FBP algorithm. As for the two
steps to adjust the smoothness parameter h, firstly, in the sinogram
domain we adjust h¼ fhi; iAΩg to the standard deviation of the
sinogram to control the smoothness of the NLM filtering

hi ¼ k0nσi; ð4Þ
where k0 is a constant, σi is the standard deviation of the
sinogram. The weight wsinoði; jÞ is then adopted as

wsino i; jð Þ ¼ exp � ‖pðNiÞ�pðNjÞ‖22;a
h2i

( )
; ð5Þ
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where Ni and Nj are the similarity windows centered at pixels i
and j, respectively. The term pðNiÞ≔fpk; kANig denotes the
image intensity restricted in the similarity window Ni. And
then the restored sinogram ~pi can be expressed by

~pi ¼
P

jANi
wsinoði; jÞpjP

jANj
wsinoði; jÞ

: ð6Þ

Secondly, in the image domain, the smoothness parameter ĥ is
determined empirically. The weight wimgði; jÞ is determined by

images Idirect
FBP and ~I

FBP
sinoNLM to implement the NLM filtering in

the image domain

wimg i; jð Þ ¼ exp � ‖IFBPdirectðNiÞ� ~I
FBP
sinoNLMðNjÞ‖22;a
ĥ
2

( )
; ð7Þ

where Ni and Nj are the similarity windows centered at pixels

i; j in images IFBPdirect and ~I
FBP
sinoNLM respectively. IFBPdirectðNiÞ≔

fIFBPdirect;k; kANig denotes the image intensity restricted in the

similarity window Ni, and the term ~I
FBP
sinoNLMðNjÞ≔

f~I FBPsinoNLM;k ; kANjg the image intensity restricted in the similar-

ity window Nj. Note that in (7) we take IFBPdirectðNiÞ and
~I
FBP
sinoNLMðNjÞ other than just two similarity windows Ni and
Nj of I

FBP
direct to determine the average weight. This is an effort

that we make along the direction of modifying the image
intensity difference in similar neighborhoods. From (7), we can
see that the closer the noisy image Idirect

FBP is to the image
~I
FBP
sinoNLM , the larger the average weight is. Because the image
~I
FBP
sinoNLM has been filtered a lot, it can be approximatively
viewed as an exact image. That is to say, the closer the noisy
image is to the exact image, the larger the average weight is,
which makes the algorithm more effective to remove noise and
preserve details.

Finally, we obtain the restored image Î ¼ fÎ i; iAΩg

Î i ¼
P

jA N̂ i
wimgði; jÞIFBPdirect;jP

jA N̂ i
wimgði; jÞ

; ð8Þ

where N̂ i denotes the search window centered at the pixel i in
the reconstructed image IFBPdirect.

As described above in (4), the smoothness parameter hi in
sinogram domain is adaptive to the noise variance σi of the
sinogram, which will make the sinogram restoration algorithm
more effective.

As for the isolated points in the noisy sinogram p, we use
median filtering to filter them. For simplicity, we also denote
the noisy sinogram with the isolated points removed as p, and
then we summarize the procedure of our proposed NLM-based
image restoration algorithm as follows in Fig. 1.

3. Simulations and results

We perform computer simulations to verify our method. The
simulated sinogram data are produced by projecting the 2-D
modified Shepp–Logan head phantom as shown in Fig. 2(a)
using the fan-beam ray-driven algorithm. As described in [10],

the size of sinogram is 888� 984, where 888 and 984 are
numbers of the detector bins and angle samples respectively.
The noisy sinogram data for low-dose CT are simulated by
adding isolated data and non-stationary Gaussian noise to the
noise-free sinogram, where the variance of the non-stationary
Gaussian noise is determined by the exponential relationship
following formula (1). In this study we take f i ¼ 100,
η¼22,000. The noise-free and noisy sinogram are shown in
Fig. 2.
Firstly, the direct FBP (DFBP) reconstructed image from the

noisy sinogram data, the reconstructed images by the FBP
algorithm from the adaptive NLM filtered sinogram (SNLM),
the energy minimization based anisotropic diffusion filtering
(EMAD) [10], and the proposed algorithm (SINLM) are shown
in Fig. 3, respectively. The results with different denoising
methods are reconstructed by the standard FBP method using
the Hanning filter.
For results by the DFBP and the SNLM methods, one can

observe that there are severe noise-induced streak artifacts. The
result by the EMAD method produces obviously annoying
artifacts in some regions full of details. In contrast, there are
hardly any streak artifacts in the result by our method. For a
clear comparison, zoomed regions marked by the white
rectangle boxes are shown in Fig. 4. One can observe that
the EMAD method produces more streak artifacts than ours,

Fig. 1. Flow chart of our proposed algorithm.

Fig. 2. 2-D Shepp–Logan head phantom and corresponding noise-free
(bottom-left) and noisy (bottom-right) sinograms.
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and our result is much closer than the EMAD's to the
original image.

Secondly, to further illustrate the effectiveness of our
proposed method, profiles along the 125th column of the
reconstructed images by the EMAD and the SINLM methods,
and its two zoomed parts are plotted in Fig. 5. One can observe
that the profile of our result is much closer than the EMAD's to
the profile of the original image. In smooth regions (marked by
B), the profile curve of our result is much more smooth
without apparent oscillation than the EMAD's, which implies
that our method has a better performance in removing noise in
smooth regions; as for image edges (marked by A), our result
has bigger slope with a smaller width than the EMAD's, which
means that our method can preserve the sharpness of edges and
details much better.

Finally, we carry out quantitative comparisons to further
validate our method. We calculate the signal to noise ratio

(SNR) of the reconstructed images in Fig. 3, which is defined
by

SNR¼ �10 log10

Z
Ω
ðI� I1Þ2 dΩ

Z
Ω
I21 dΩ

� �
:

�
ð9Þ

Fig. 3. Reconstructed images utilizing different methods (from top-left to bottom-right): DFBP, SNLM, EMAD, and SINLM. Regions marked by the white
rectangle boxes are zoomed in for a clearer comparison in Fig. 4.

Fig. 4. Zoomed parts of images in Fig. 3 (from top to bottom-right): original
simulation image, results by EMAD and SINLM.
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In addition, we also calculate the normalized root mean square
error (NRMSE) and the normalized mean absolute deviation
(NMAD), which are formulated as follows:

NRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Ω
ðI� I1Þ2=σ21 dΩ

s
; ð10Þ

NMAD¼
Z
Ω
jI� I1j=jI1j dΩ; ð11Þ

where σ1 is the standard variance of the original image. The
terms I and I1 represent the reconstructed image and the
original image, respectively. The index SNR reflects the noise
level of an image, while the NRMSE and the NMAD imply the
differences between the reconstructed image and the original
image. The result of quantitative analysis is shown in Table 1,
from which we can find that the image filtered with our
proposed method has much higher SNR value and lower
NRMSE and NMAD values than other images in Fig. 3. These
results validate that our proposed method has the best quality.

In a word, from both the visual effects and the numerical
indexes, our proposed algorithm performs much better than
other methods in above experiments.

4. Conclusions

In this paper, we develop a novel non-local filtering
algorithm for low-dose CT based on the sinogram restoration.

The proposed algorithm makes use of the advantage of self-
similarity filtering to reduce the noise while preserving main
details of important data. The experimental results show that
the proposed method has better performance than some related
restoration algorithms with respect to visual inspection and
quantitative analysis. This is our first attempt at an effective
low-dose CT imaging for properly reducing radiation damages
in medical applications.
For future research, we will further try to optimize smooth-

ness parameters in the process of non-local filtering according
to the statistics of noise. At the same time, the techniques of
speeding up the algorithm deserve deep research to approach
to the proposed method.
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