
 

 

Min-Max Stochastic Optimization with 
Applications to the Single-Period Inventory 

Control Problem 
 
 

Kyungchul Park* 
Department of Business Administration, Myongji University 

 
(Received: February 4, 2015 / Accepted: April 28, 2015) 

 

ABSTRACT 

Min-max stochastic optimization is an approach to address the distribution ambiguity of the underlying random vari-
able. We present a unified approach to the problem which utilizes the theory of convex order on the random variables. 
First, we consider a general framework for the problem and give a condition under which the convex order can be 
utilized to transform the min-max optimization problem into a simple minimization problem. Then extremal distribu-
tions are presented for some interesting classes of distributions. Finally, applications to the single-period inventory 
control problems are given. 
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1.  INTRODUCTION 

In min-max stochastic programming approach, the 
distribution of the underlying random variables is not 
specified but is assumed to be a member of a given class 
of distributions. Then a solution is found which attains 
the minimum cost with respect to the worst-case distri-
bution in the class.  

In practice, the distribution of the relevant random 
variable is usually estimated using the historical data. 
However, the accurate estimation may be very difficult 
especially when the data are not sufficient or they are 
inadequate because of the possible significant change of 
the future state of nature. In this case, the min-max opti-
mization is helpful if we can identify the class of distri-
butions in a reasonable way. Though it can be viewed as 
pessimistic, it has the advantage of avoiding the decision 
bias due to the erroneous estimation of the distribution. 

This paper presents a unified approach to the min-

max optimization problem by utilizing the convex order 
on the distributions. The extremal distributions (called 
tight supremum) with respect to the convex order are 
identified for some interesting classes of distributions. 
Those distributions are used to transform the min-max 
optimization problem into a simple minimization problem. 

As applications, two important single-period inven-
tory control problems are considered. The first one is the 
newsvendor problem pioneered by Arrow et al. (1951). 
The newsvendor problem is considered as one of the 
most important one in the inventory control theory, see 
Porteus (2002). A good review on the problem can be 
found in Khouja (1999) and Qin et al. (2011). The sec-
ond one is the lot sizing problem under random yield 
(Yano and Lee, 1995). In the newsvendor problem, the 
random variable is the consumers’ demand, while in the 
lot sizing problem, it is the production yield, which is 
defined as the number of good units produced. 

The min-max approach for the newsvendor prob-
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lem is sometimes called in the literature as a distribu-
tion-free newsvendor problem. Scarf (1958), by assum-
ing only the mean and the variance of the demand are 
known, addressed the problem for the first time. Then 
Gallego and Moon (1993) disseminated the Scarf’s re-
sult and extended it to the case when the demand is non-
negative. Alfares and Elmorra (2005) extended the re-
sult to the case when the penalty cost for the shortage 
exists. The results in this paper are general in that they 
include all the cases given in the previous research. In 
particular, we will present the optimal control policies 
for the cases when the mean, the variance, and the sup-
port of the demand distribution are given. Other closely 
related works include Perakis and Roels (2008) and Han 
et al. (2014), which addressed the problem of distribu-
tion-ambiguous newsvendor problem in somewhat dif-
ferent contexts. Gallego et al. (2001) considered the min- 
max inventory control problem in the multi-period cases. 

 
The contributions of the paper are summarized as fol-
lows. 
(1) A general framework for the min-max optimization 

problem with a single random variable is given. In 
particular, the condition under which the problem can 
be transformed into a simple minimization problem 
is specified. 

(2) A general method to find a tight supremum for given 
class of random variables is discussed with some 
important theoretical results. It is applied to the pro-
blems of finding the tight supremum for some inter-
esting classes of distributions. 

(3) The tight supremum is identified for classes of dis-
tributions commonly found in the literature, which 
can be used in solving many interesting problems. 

(4) The min-max optimal solutions to the newsvendor 
problem and the random yield lot-sizing problem are 
given. 
 
This paper uses the theory of convex orders as a 

main vehicle to solve the min-max optimization problem. 
So it seems to be in order to give the brief definition be-
fore delving into the details. Müller and Stoyan (2002) 
is a good reference on the stochastic orders. For a ran-
dom variable X, let XF  be its distribution. Then for two 
random variables X and Y, we define the convex order 

cxX Y≤ (or X cx YF F≤ ) if ( ) ( )g X g YΕ ≤ Ε  holds for all 
convex functions g where the expectations exist. Some 
relevant theory on the convex order will be given when 
needed in the body of the paper. 

The rest of the paper is organized as follows. In 
Section 2, we give the general result on the min-max 
optimization based on the theory of the convex order. In 
Section 3, a method to find the extremal distribution 
(called tight supremum) is presented and is applied to 
some interesting classes of distributions. The results are 
used in solving the min-max newsvendor problem and 
the lot sizing problem in Section 4. Finally, Section 5 
closes the paper with concluding remarks. 

2.  MIN-MAX STOCHASTIC OPTIMIZA-
TION FRAMEWORK 

Let ,Ω  S be two given nonempty subsets of real 
numbers and let M be a nonempty class of distributions. 
A cost function : S →×Ωv R  is given so that ( , )v x ξ  is a 
convex function in ∈Ωξ  for all fixed .x S∈  The ex-
pected cost function : × →V S M R  is defined as follows: 

 
( , ) ( , ) .( )F dV x F v x

Ω
= ∫ ξ ξ   (1) 

 
For simplicity of presentation, we assume the inte-

gral in (1) is well-defined and has a finite value for any 
F M∈  and Ω  is suppressed when it is clear from the 
context. 

In the following, if not specified otherwise, let us 
assume that the distributions in the class M are of the 
same mean .μ  Also F M∈  is used to denote both the 
distribution function and the distribution (the probability 
measure induced by the distribution function F). 

Consider the following min-max optimization pro-
blem: 

 
min max ( , )x S F M V x F∈ ∈ .   (2) 

 
The above problem is to seek a solution whose worst 

expected cost is the minimum among all feasible solu-
tions .x S∈  

Suppose we have an extremal distribution supF  
which is defined as follows: 

 
supcxF F≤ , for all F M∈ .    (3) 

 
Note that the distribution supF  may not be an ele-

ment of the class M. Then since ( , )v x ξ  is a convex 
function in ξ  for each fixed x, it follows that 

 
ss pu up( , ) ( , ( ,) ( ) ) ( ) ( , ),= ≤ =∫ ∫V x F v F d Fx v x V x Fdξ ξ ξ ξ   

for all .∈F M           (4) 
 
Further, suppose that for each ,x S∈  the following 

holds: 
 

supmax ( , ) ( , )F M V x F V x F∈ = .   (5) 
 
Then it is clear that  
 

supmin max ( , ) min ( , ).x S F M x SV x F V x F∈∈ ∈ =   (6) 
 
Hence in this case the min-max optimization prob-

lem reduces to the simple minimization problem, which 
leads to the following definition. 

 
Definition 1: Let S and M be a subset of the real num-
bers and a given class of distributions, respectively. A 
distribution supF  is a tight supremum of the subset S, the 
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class M, and the function V if it satisfies the following 
two conditions: 
(1) sup ,cxF F≤  for all ,F M∈ , 
(2) For each ,x S∈  supmax ( , ) ( , ).MF V x F V x F∈ =  

 
When it is clear from the context, we will simply 

call supF  a tight supremum. Also when the condition (2) 
in the above definition 1 does not hold, we call supF  a 
supremum. The following theorem is a result of the above 
discussion.  

 
Theorem 1: Let a distribution supF  be a tight supremum 
of the subset S, the class M, and the function V. Then 

supmin max ( , ) min ( , ).x S F M x SV x F V x F∈ ∈ ∈=  When supF  is 
not tight (that is, a supremum only), then we have an 
upper bound on the optimal value, that is, min maxx S F M∈ ∈  

sup( , ) min ( , ).∈≤ x SV x F V x F  
Hence for a given class of distributions, if we can 

find a tight supremum, then the min-max optimal solu-
tion can simply be found by minimizing the expected 
cost with respect to the tight supremum. 

2.1 Cost Functions 

Assume that we are given a (not necessarily tight) 
supremum supF  for the class M. For it to be tight, we 
have to show that supmax ( , ) ( , )F M V x F V x F∈ =  holds for 
all .x S∈  In the following, we consider a specific family 
of cost functions and find the conditions under which 

supF  is a tight supremum. 
For any distribution F, the function ( ) (F xπ ξ= −∫  

) ( )x F dξ+
 is convex and nonincreasing in .x R∈  In Müller 

and Stoyan (2002), it is called as an integrated survival 
function. There, it is shown that supcxF F≤  holds if and 
only if 

sup
( ) ( )F Fx x≤π π  for all .x R∈  Also there, it is 

shown that for any nonincreasing convex function ( )xπ  
which satisfies (lim ) 0x x→∞ =π  and ( ) ]lim [x x xπ→−∞ + =  

,μ  there exists distribution F whose integrated survival 
function is ( ).xπ  Furthermore, the distribution function 
F is given by ( ) 1 ( ),x xF π+′= +  where π+′  is the right-
derivative of the function π (since π  is convex, it should 
always exist). 

Let the cost function be of the following form: 
 

) ( )( ( )) (( , )( ( ) ) ( ) ( )+ += − + − + +a x e x b x ev x c x d xx ξ ξ ξ ξ ,  (7) 
 

where ( ) , ( )0 0, ( ), ( ), ( )a x b x c x d x e x≥ ≥  are arbitrary func-
tions of x R∈  and for a real number x, max( , 0).x x+ =  
Suppose supF  is given such that sup ( ) arg m x ( )a F M FF x x∈= π  
holds for all .x R∈  Then it is clear that supcxF F≤  holds 
for all .F M∈  Note that we assume that the distributions 
F M∈  are of the same mean and also note that ( ( )e x −  

) ( ) ( ( )) .e x e xξ ξ ξ+ += − + −  Hence, if the cost function is 
of the form (7), then supmax ( , ) ( , ),∈ =MF V x F V x F  for all 

.x S∈  
The result is summarized in the following theorem 2. 
 

Theorem 2: Let a distribution supF  be given such that 

sup ( ) arg m x ( )a F M FF x x∈= π  holds for all .x R∈  Then for a 
cost function of the form (7), supF  is a tight supremum. 

 
Remark 1: The form of the cost function can be more 
general than that given in (7). Especially, when the dis-
tributions in M have the same moments of higher orders, 
the cost function can have the corresponding terms. 

2.2 The Newsvendor Problem and the Random 
Yield Lot-Sizing Problem 

In the (generalized) newsvendor problem, the cost 
function is defined as 

 
1 ) ( ) (( , )u oc xv x cx ξ ξ ξ+ += − + −  (8) 

( ) ( )( ) ,o u oc x c c xξ ξ += − + + −  
 

where uc  and oc  be nonnegative underage and overage 
costs, respectively. For a given class of distributions M, 
the min-max (distribution-free) newsvendor problem is 
defined as 0 1min max ( , ),x F M V x F∈≥  where 1 1( , ) ( , )V x F v x ξ=∫  

( ).F dξ  It is clear that the cost function (8) is of the form (7). 
When the production yield is a multiplicative ran-

dom variable and the demand is certain (assumed to be 1, 
without loss of generality), the cost function of the pro-
duction lot sizing problem is given by 

 
2 ) ( ) (( , )( 1) ,c x r h px xv ξ ξ ξ += − + + + −   (9) 

 
where x is a production lot size and r, c, h, and p are unit 
revenue, production cost, holding cost, and penalty cost, 
respectively (see Yano and Lee, 1995). Since ( 1)xξ +− =  

( 1/ ) ,x xξ +−  for all 0,x >  the cost function (9) is also of 
the form (7). 

The above discussions lead to the following result. 
 

Corollary 1: Let a distribution supF  be given such that 
sup ( ) arg m x ( )a F M FF x x∈= π  holds for all .x R∈  Then both 

for the newsvendor problem and for the lot sizing prob-
lem, supF  is a tight supremum. 

3.  CHARACTERIZATION OF THE TIGHT 
SUPREMUM 

3.1 Primal and Dual Approaches 

This section explores a systematic method to get the 
tight supremum for the cost function (7). To this end, we 
should consider the following problem (see Theorem 2): 

 
)ax (m )( +

∈ Ω
−∫MF x F dξ ξ ,    (10) 

 
for a given class of distributions M and a real number x. 
Simply, the problem is to find the supremum of the class 
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M with respect to the convex order. 
To be specific, let us assume that the class M is 

given by 
 

0: ( ) ( ) , 0, 1,{ , }i ig F d m iF KM ξ ξ
Ω

= ≥ = =∫ ,  (11) 
 

where 1K ≥  and )(i
ig =ξ ξ  and 0 1 .1,m m μ= =  The condi-

tion 0F ≥  means that F is a nonnegative measure, which 
together with 0,g  requires that F should be a probability 
measure. The class of distributions (11) appears in the 
well-known problem of the moments. 

Then the problem (10) can be restated as follows: 
 

0max { ( ) ( ) :F x F dξ ξ+
≥ Ω

−∫         (12) 

( ) ( ) , 0, 1, , }.i ig F d m i Kξ ξ
Ω

= =∫  

 
In the following, we present two approaches to 

solving the problem (12), that is, the primal and dual 
approach. The primal approach is based on the result in 
Rogosinsky (1958), which basically states that if the 
problem (12) has a finite optimum, there exists an opti-
mal distribution with its support a set of at most 1K +  
different points. In particular, it implies that it is suffi-
cient to consider only the discrete distributions. The dual 
approach is based on the Lagrangian duality. The La-
grangian dual gives an upper bound on the problem (12). 
If there is a saddle point, it should be an optimum. 

 
• Primal Approach 

By using the result in Rogosinsky (1958), the prob-
lem (12) is equivalent to the following problem:  

 
'max ( )GΩ ⊂Ω ′Ω ,   (13) 

 
where { : 1, , 1}j j Kξ′Ω = ∈Ω = +  and  

 

0: 1, , 1}
1

{ 1( ) max { ( :)+≥ =
+

+ ==′Ω −∑j j K
K
j jp j xG p ξ    (14) 

1
1 ( , 0,1, , }.)j

K
j ij ip g i Kmξ+

= = =∑  
 
Note that the problem in (13) is a linear program to 

find an optimal discrete distribution with a set of 1K +  
points in Ω  as its support. 

In some cases, we can find the explicit form of the 
function ,( )G ′Ω  which can be easily maximized. In the 
next subsection, we give some examples. When this is 
the case, the primal approach becomes a viable option. 

 
• Dual Approach 

The dual approach has an advantage of obtaining 
an upper bound on the optimal value of the problem (12) 
in a relatively simple way. This property is very useful, 
especially when there is difficulty in applying the primal 
approach. 

Let 0, 1 ,, ,i iR Kλ ∈ =  be a Lagrangian multiplier 
with respect to the i-th constraint in (12). Then the La-

grangian dual problem is 0min max )( ,,F L F≥λ λ  where 
 

0 0( ) {( ) ( }, ) ( )+
= =Ω

= + − −∑ ∑∫
K K

i i i ii im x g F dL F λ λ ξ λ ξ ξ .  (15) 

  
If for a given 

1,KRλ +∈  there exists ξ′∈Ω  such that 
0 ( ) ( ) ,K

i i ig xλ ξ ξ +
=

′ ′< −∑  then by choosing nonnegative 
measures 0,,Fα α ≥  where '({ })F =ξ α  and ( \{ })F ξ′Ω  

0,=  we can see that 0max ( ), .F L F λ≥ = ∞  Also note that 
if 0 ( ) ( )i

K
i ig x=

+≥ −∑ λ ξ ξ  holds for all ,∈Ωξ  then 0maxF≥  
0)( , K

i iiL mF λ λ==∑  since the maximum of the integral in 
(15) should be zero. Hence the dual problem to (12) can 
be stated as follows: 

 

0 0min { : ) ( ) , for all }(= =
+≥ − ∈Ω∑ ∑K K

i ii i i im g xλ λ λ ξ ξ ξ .   (16) 
  
The dual problem (16) can be viewed as finding a 

function 0 (( ) )K
i ii gg ξ λ ξ==∑  which gives an upper bound 

on the function ( )x +−ξ  with the minimum possible 
weighted sum of moments.  

Now let *F  and *λ  be the optimal solutions to the 
primal (12) and the dual (16), respectively and assume 
they are a saddle point. Then, we should have  

 
) ( *, *min ) max ( , **, )( F ML L F L FF ∈= =λ λ λ λ .   (17) 

 
In particular, we have 

*
0*( ) ( )+

=Ω
− =∑∫

K
ii iF mx dξ ξ λ  and 

 
*

0 ( ) ( ) } *( ) 0{ +
Ω = − − =∑∫ i i

K
i g x F dλ ξ ξ ξ .      (18) 

 
Since 

*
0 ( ,) ( ) 0=

+− − ≥∑ K
i i ig xλ ξ ξ  for all ,∈Ωξ  if *F  

has a density with respect to the Lebesgue measure (that 
is, it is a continuous distribution), then 

*
0 ( )K

i i igλ ξ= =∑  
( ) ,xξ +−  for all ∈Ωξ (this case is not interesting in gen-
eral). On the other hand, if it has a density with respect 
to the counting measure (that is, it is a discrete distribu-
tion), then 

* 0({ }) >F ξ  only if 
*

0 ( ) ( ) ,ii i
K g xλ ξ ξ=

+= −∑  
.∈Ωξ  The mixed case can also be treated easily. Hence 

we can conclude that the support of F* should be a sub-
set of 

* *
0{ : ( ) ( ) }.+

=Ω = ∈Ω = −∑K
i ii g xξ λ ξ ξ  This result can 

be viewed as a complementary slackness theorem.  
The above discussion is summarized in the follow-

ing theorem 3. 
 

Theorem 3: Given a distribution *F  and a vector 
1* ,KRλ +∈  

they form a saddle point if and only if  
 

(1) primal feasibility: ) *( ,( )i iF dg mξ ξ
Ω

=∫  for all 
0, 1, , ,i K=  

(2) dual feasibility: 
*

0 ( ) ( ,)i i
K
i g x=

+≥ −∑ λ ξ ξ  for all ,∈Ωξ  
and 

(3) complementary slackness: 
** 0( \ ) ,Ω Ω =F  where 

* *
0{ : ( ) ( ) }.+

=Ω = ∈Ω = −∑K
i ii g xξ λ ξ ξ  

 
It is not clear here when the strong duality holds for 

the primal and dual pair. Some results for the strong 
duality can be found in Shapiro and Kleywegt (2002). 
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However, if we can find a pair of distribution *F  and a 
vector 

1* ,KR +∈λ  which satisfies the conditions in Theo-
rem 3, they should be optimal primal and dual solutions, 
respectively. 

The dual approach is first to find an optimal solu-
tion to the dual problem (16). Then after finding the set 

*,Ω  we try to find a distribution in the class M with its 
support in 

*.Ω  Examples of the dual approach appear in 
the next subsection.  

In some cases, the set 
*Ω  can be shown to have 

specific number of different points, as exemplified in the 
following corollary. 

 
Corollary 2: Let M be the class of distributions with a 
finite mean and a positive variance. Also let Ω  be one 
of the followings; [ , ], [ , ), ( , ], ( , ),∞ −∞ −∞ ∞a b a b  where 

.a b<  Then the set 
*Ω  in Theorem 3 should have 2 dif-

ferent points. 
 

Proof: We only consider the case when .RΩ =  Let *λ  
be an optimal dual solution. Consider the function ( )g ξ  

* 2 * *
2 1 0.λ ξ λ ξ λ= + +  Then since ) ( ,( )g x +≥ −ξ ξ  for all ,R∈ξ  

*
2 0,>λ  so the function )(g ξ  is a quadratic strictly con-

vex function. Hence we should have at most one solu-
tion to the equation 0( ) .g =ξ  The same is true for the 
equation ) ( .( )g x += −ξ ξ  Hence *Ω  has at most 2 points. 
For a distribution to have a positive variance, its support 
should have at least two points. □ 

 
Remark 2: Under the same assumption in Corollary 2, 
we can also show that in the primal approach, only two-
point distributions are sufficient to consider. This can be 
seen by considering the dual of the LP problem (14). 

3.2 Characterization of the Tight Supremum 

In this subsection, we will characterize the tight su-
premum for some interesting classes of distributions. 

 
• Fixed Mean and Support 

For given three real numbers ,μ  a, and b with a <  
,bμ <  let 

[ , ]Μ a b
μ  be the set of all distributions on the 

interval [ , ]a b  with the finite mean .μ  The dual problem 
(16) is the following: 

 
0 1 0 1: ( ) , formin  all [ }{ , ]++ + ≥ − ∈x a bλ λ μλ λ λξ ξ ξ ,  (19) 

 
where [ , ].S ax b∈ =  Since the function 0 1λ λ ξ+  is linear, 
it is easy to see that the minimum is attained by the line 
connecting two points ( , 0)a  and ( , ).b b x−  Thus the 
optimal dual solution is 

 
* *
0 1( ) /( ), ( ) /( )= − − − = − −b x a b a b x b aλ λ .  (20) 
 
Hence the tight supremum has the integrated sur-

vival function  
 

( ) ( )( ) /( ),x b x a b a= − − −π μ   (21) 

which corresponds to the distribution  
 

1 ) /( )) ) /( )) ,(( ((a bbb a a b aF μ δ μ δ= − − + − −   (22) 
 

where tδ  is a (degenerate) random variable with its whole 
mass on the point .t R∈  Note that the tight supremum 

1F  has its support { , }.a b  
 

Remark 3: The above result shows that for any random 
variable X with its distribution 

[ , ], Var( ) (∈Μ ≤a b
XF X aμ  

)( ).bμ μ −−    
 

• Fixed Mean and Variance 
Let ,Μμ σ  be the set of all distributions with a finite 

mean μ  and a standard deviation 0.>σ  First, let us con-
sider the case 0=μ  and 1.=σ  The corresponding dual 
problem is  

 
2

0 2 0 1 2m : ( )in { , }x Rλ λ λ λ λ ξ λ ξ ξ ξ++ + + ≥ − ∈ .  (23) 
 
For 

3R∈λ  to be dual feasible, we should have 2λ  
0.>  Also by inspection of the dual problem, it can be 

seen that it is sufficient to consider the case  
 

2 2
0 1 2 ( )λ λ ξ λ ξ α ξ β+ + = − ,     (24) 

 
where 0>α  and .x<β  Then by following the same 
proof in p. 58 in Müller and Stoyan (2002), we can show 
that the tight supremum is given by the distribution 

 
2 1/ 2

0( ) (1/ 2)(1 ( 1) )F x x x −= + + .    (25) 
 
Now since cxX Y≤  if and only if ( )/()/ cxX Yμ σ μ σ− −≤  

(see Müller and Stoyan 2002), the tight supremum in the 
general case ,Μμ σ  is given by 

 
2 0( ) (( ) / ).F x F x μ σ= −    (26) 

 
We can also use the primal approach as follows. By 

Corollary 2 and Remark 2, we know that it is sufficient 
to consider only two-point distributions. For simplicity, 
let us consider the case 0,1.Μ  Let 1 20< <ξ ξ  be given. 
From the result of the dual approach, we can safely as-
sume 1 .x<ξ  Then the corresponding primal problem is 

 
20 2 1 2) :ax { ( 1m ,+

≥ − + =p x p pp ξ     (27) 
2 2

1 1 2 2 1 1 2 20, 1}.p p p pξ ξ ξ ξ+ = + =  
 
By rearranging the constraints in (27), we can con-

clude that 1 2, 1/ ,t tξ ξ= = −  for some real number 0t <  
and 

2 2
2 /(1 ),p t t= +  which constitutes feasibility conditions 

of the problem (27). Now by maximizing 22( )xp +−ξ  
with substitution of the terms, we can show that the op-
timal solution is obtained when 

2 1/ 2( 1) ,t x x= − +  which 
results in the integrated survival function (the optimal 
primal value)  
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2 1/ 2
0( ) (1/ 2)( ( 1) ),x x xπ = − + +   (28) 

  
of which distribution function is given by 0F  in (25). 

 
Remark 4: For the class 0,1,Μ  the optimal distribution 
of the primal problem is given by 1/(1 ) ,t txF p p −+ −= δ δ  
where 

21/( 1)p t= +  and 
2 1/ 2( 1) .t x x= − +  

 
• Fixed Mean, Variance, and Lower Bound  

Let 
[ ,

,
)∞Μ a

μ σ  be the set of all distributions defined on 
[ , )a ∞  with a finite mean a>μ  and a standard deviation 

0.>σ  As in the case of the fixed mean and variance, we 
can use either the primal or dual approach. Here, we 
consider the primal approach.  

As in the previous case, let us assume 0=μ  and 
1.=σ  Using the previous results, we can see that if t =  

2 1/ 2( 1) ,x ax− + ≥  then the optimal primal value is 0 ( )xπ  
given in (28). So consider the case 

2 1/ 2( 1) ,x ax− + ≤  which 
is equivalent to 

2( 1) / 2 .x a a≤ −  Then the maximum in 
(27) with 1 2, 1/ ,t tξ ξ= = −  for some 0t <  is obtained 
when .t a=  So in this case, the optimal primal value is  

 
[ , )
0,1

2 2) ( ) ( )/(1 )max (aF x F d a x a aξ ξ∞Μ
+

∈
− =− + +∫ ,  (29) 

  
where 

2( 1) / 2 .a x a a≤ ≤ −  Now also using the result that 
cxX Y≤  if and only if ( ) / ) / ,(cxX Yμ σ μ σ− ≤ −  we can 

get tight supremum for 
[ ,

,
)∞Μ a

μ σ  as given by  
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0
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2 2
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( ) if  [ , ]{( ) }/2( )

)/ ), otherwise.                ((       
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⎪

=⎨ ∈
⎪ −⎩

+ − − −

a

a ax aF x

F x

μ

μ σ

σσ

μ μ σ μ       (30) 

 
• Fixed Mean, Variance, and Support  

Let 
[ ,

,
]Μ a b

μ σ  be the set of all distributions defined on 
[ , ]a b  with a finite mean a b< <μ  and a standard devia-
tion 0>σ  and 

2 ) )( (a b− −≤σ μ μ (see Remark 3). In this 
case, by using a similar approach as in the case with 
lower bound, we can show that the tight supremum is 
given by the distribution 
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 (31) 

4.  MIN-MAX OPTIMAL SOLUTION OF THE 
SINGLE PERIOD INVENTORY CON-
TROL PROBLEM 

4.1 The Newsvendor Problem 

It is well known that for a given distribution F, the 

optimal solution of the newsvendor problem is given by 
Q which satisfies 

 
inf{ : }( )= ≥Q x F x ζ ,    (32) 

 
where /(1 )o u oc c c= +−ζ  is the optimal stock-out ratio 
(Porteus, 2002). Hence the min-max optimal solution for 
a given class of distributions M is  

 
sup* inf{ : ( ) 1 }= ≥ −Q x F x ζ ,   (33) 

 
where supF  is a tight supremum of the class M. 

 
Now using the results given in Section 3, we can 

get the following results (the results are stated for non-
negative random variables when there is lower bound 
specified on the support). 

 
Corollary 3:  
1. For 

[0, ],Μ b
μ  * 0,Q =  if ( ) /b b≤ −ζ μ  and * ,Q b=  oth-

erwise. 
2. For , ,μ σΜ  

1/ 2 1/ 2( / 2)[( / ) ( /* ) ]u o o uc c c cQ −= +μ σ . 
3. For 

[0
,
, ) ,∞Μμ σ  

1/ 2 1/ 2* ( / 2)[( / ) ( / ) ]u o o uQ c c c c= + −μ σ , if 
2 22 )/( +≥ μ σζ σ  and * 0,Q =  otherwise. 

4. For 
[ ,

,
0 ]Μ b
μ σ ,  
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Remark 5: The solution given in Corollary 3-2 corre-
sponds to a generalization of the Scarf’s ordering rule 
(Scarf 1598, Gallego and Moon 1993, Alfares and El-
morra, 2005).  

4.2 The Random Yield Problem 

For a given distribution F, the optimal solution of 
the production lot sizing problem is given by Q which 
satisfies 

 
1/inf{ : ) },(xQ F dx ξ ξ τ
−∞

= ≤∫    (34) 
 

where ( /( ).)c h r h p= + + +τ μ  Hence the min-max opti-
mal solution for a given class of distributions M is  

 

s p
/

u
1* inf{ : ( ) },xQ x F dξ ξ τ
−∞

= ≤∫      (35) 
 

where supF  is a tight supremum of the class M. Similar to 
the newsvendor problem, we can get the optimal lot size 
by using the results of Section 3. However, unlike the 
newsvendor problem, the explicit form of the solution is 
complicated in general, so it is omitted. We only mention 
that the solution can be obtained by solving the convex 
function minimization problem, that is, sup0min ( , ),x V x F≥  
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where  
 

1/
( , ) ( ) ( ) ( 1) ( ).

x
V x F c x r h p x F d∞

= − + + + −∫μ ξ ξ  

5.  CONCLUDING REMARKS 

This paper gives a unified approach to the min-max 
stochastic optimization problem and characterizes the 
tight supremum for some interesting classes of distribu-
tions. Besides the newsvendor problem and the lot siz-
ing problem considered in this paper, the results will be 
useful in other contexts.  

The tight supremum given in this paper is derived 
under the assumption that strong duality holds for the 
primal and dual problems. General conditions for the 
strong duality call for more research. Also more system-
atic method to derive the tight supremum is needed for 
more general cost functions. Other interesting classes of 
distributions (for example, symmetric distributions) re-
quire more investigation.  
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