DOI QR코드

DOI QR Code

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi (Department of Physics, Sungkyunkwan University) ;
  • Jung, Daesung (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Yooseok (Division of Material Science, Korea Basic Science Institute) ;
  • Song, Wooseok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Adhikari, Prashanta Dhoj (Department of Physics, Sungkyunkwan University) ;
  • An, Ki-Seok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Chong-Yun (Department of Physics, Sungkyunkwan University)
  • Received : 2015.04.18
  • Accepted : 2015.05.28
  • Published : 2015.05.30

Abstract

The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  3. N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009). https://doi.org/10.1103/PhysRevLett.102.026807
  4. A. F. Young and P. Kim, Nature Phys. 5, 222 (2009). https://doi.org/10.1038/nphys1198
  5. G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984). https://doi.org/10.1103/PhysRevLett.53.2449
  6. X. Du, I. skachko, A. Barker and E. Y. Andrei, Nat. Nanotech. 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199
  7. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  8. Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang, ACS Nano 4, 3201 (2010). https://doi.org/10.1021/nn100780v
  9. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012). https://doi.org/10.1126/science.1218461
  10. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotech. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  11. B. Guo, L. Fang, B. Zhang, and J. R. Gong, Insciences J. 1, 80 (2011).
  12. K. Yokota, K. Takai, and T. Enoki, Nano Lett. 11, 3669 (2011). https://doi.org/10.1021/nl201607t
  13. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare and C. N. R. Rao, Adv. Mater. 21, 4726 (2009).
  14. N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Carbon 48, 255 (2010). https://doi.org/10.1016/j.carbon.2009.09.013
  15. H. Medina, Y. -C. Lin , D. Obergfell , and P. -W. Chiu, Adv. Funct. Mater. 21, 2687 (2011). https://doi.org/10.1002/adfm.201100401
  16. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009). https://doi.org/10.1021/nl803279t
  17. Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, ACS Nano 4, 1790 (2010). https://doi.org/10.1021/nn100315s
  18. D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y. -M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Nano Lett. 9, 388 (2008).
  19. J. Park, W. H. Lee, S. Huh, S. H. Sim, S. B. Kim, K. Cho, B. H. Hong, and K. S. Kim, J. Phys. Chem. Lett. 2, 841 (2011). https://doi.org/10.1021/jz200265w
  20. A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, J. Phys. Chem. C 112, 17741 (2008). https://doi.org/10.1021/jp807380s
  21. A. E. Hooper, D. Werho, T. Hopson, and O. Palmer, Surf. Interface Anal. 31, 809 (2001). https://doi.org/10.1002/sia.1125
  22. D. Kowalczyk, M. M. Chehimi, S. Slomkowski, and M. Delamar, Int. J. Adhes. Adhes. 16, 227 (1996). https://doi.org/10.1016/0143-7496(95)00052-6
  23. J. Baltazar, H. Sojoudi, S. A. Paniagua, J. Kowalik, S. R. Marder, L. M. Tolbert, S. Graham, and C. L. Henderson, J. Phys. Chem. C 116, 19095 (2012). https://doi.org/10.1021/jp3045737
  24. L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutierrez, S. P. Chockalingam, C. J. Arguello, L. Palova, D. Nordlund, M. S. Hybertsen, D. R. Reichman, T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, Science 333, 999 (2011). https://doi.org/10.1126/science.1208759
  25. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, And A. K. Sood, Nat. Nanotech. 3, 210 (2008). https://doi.org/10.1038/nnano.2008.67
  26. P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, Nano Lett. 11, 132 (2011). https://doi.org/10.1021/nl103015w
  27. Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L.C. Paulus, C.-J. Shih, M.-H. Ham, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, J. Kong, Pablo Jarillo-Herrero and M. S. Strano, Nature chemistry 4, 724-732 (2012). https://doi.org/10.1038/nchem.1421
  28. H. -Y. Chiu, V. Perebeinos, Y. -M. Lin, and P. Avouris, Nano Lett. 10, 4634 (2010). https://doi.org/10.1021/nl102756r

Cited by

  1. Lattice Transparency of Graphene vol.17, pp.3, 2017, https://doi.org/10.1021/acs.nanolett.6b04989
  2. Simple Interface Engineering of Graphene Transistors with Hydrophobizing Stamps vol.8, pp.23, 2016, https://doi.org/10.1021/acsami.6b02166