DOI QR코드

DOI QR Code

In vitro Anti-Cancer Effect of Wellness-Compound (Ochnaflavone)

In vitro 웰니스 화합물 (Ochnaflavone)에 의한 암세포 성장 저해

  • 이재숙 (광주여자대학교 미용과학과) ;
  • 최화정 (광주여자대학교 미용과학과) ;
  • 김명주 (광주보건대학교 피부미용과) ;
  • 박장순 (송원대학교 뷰티예술학과)
  • Received : 2015.03.01
  • Accepted : 2015.05.20
  • Published : 2015.05.28

Abstract

Medicinal plants containing wellness-fusion-complex compound are increasingly being pursued as suitable alternative sources of various biological properties. In this study, inhibitory effect of Quintinia acutifolia, which is a New Zealand plant, on P388 murine lymphocytic leukemia cells using MTT [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide] assay. Based on $^1H-NMR$, $^{13}C-NMR$ spectral data and other spectral analysis, 2,3,2'',3''-tetrahydroochanaflavone (1) and 2'',3''-dihydroochana-flavone (3) inhibited the leukemia cells were purified from the plants. 2,3,2'',3''-tetrahydroochanaflavone (1) and 2'',3''-dihydroochana-flavone (3) are biflavonoids possessing two basic flavonoids and actively inhibited growth of P388 murine lymphocytic leukemia cells with a 50% inhibitory concentration ($IC_{50}$) of $8.2{\mu}g/mL$ and $3.1{\mu}g/mL$, respectively. Specially, 2'',3''-dihydroochana-flavone (3) possessed unconjugated flavonone system, which isn't consist of a pair with B ring of 2,3,2'',3''-tetrahydroochanaflavone (1). Therefore, the two compounds could be considered as a candidate for development of anticancer drugs and need to much studies in the future.

많은 식물들은 부작용이 적고, 가격이 저렴하며, 다양한 웰니스 융복합 화합물들을 함유하고 있기 때문에 다양한 제재에 이용되고 있다. 이 연구에서 뉴질랜드 식물인 Quintinia acutifolia (Q. acutifolia)로부터 쥐 백혈병 세포(P388 murine lymphocytic leukemia cells)의 성장을 저해하는 활성을 MTT [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide] assay에 의해 평가하였다. P388 murine lymphocytic leukemia 세포의 성장을 저해하는 2,3,2'',3''-tetrahydroochanaflavone (1)과 2'',3''-dihydroochana-flavone (3)을 1D/2D-NMR와 다른 분광학적 분석법에 의해 분리하였고, 구조를 규명하였다. 이 두 화합물은 두 개의 플라보노이드 기본구조를 갖는 바이플라보노이드 (biflavonoid)로써 2,3,2'',3''-Tetrahydroochnaflavone (1)과 2'',3''-dihydroochana-flavone (3) 화합물은 P388 murine lymphocytic leukemia세포에 대해 50%의 성장저해를 나타내는 농도가 각각 $8.2{\mu}g/mL$$3.1{\mu}g/mL$로 나타났다. 특히 2'',3''-dihydroochana-flavone (3) 화합물은 2,3,2'',3''-tetrahydroochanaflavone (1)의 B 링(ring)에 쌍으로 결합되지 않은 플라본 구조 (unconjugated flavonone system)를 갖는 것으로 나타났다. 그럼으로 두 화합물은 향후 항암 치료제 개발에 이용될 수 있으며, 더 많은 연구가 요구된다.

Keywords

References

  1. B. C. Aston, The indigenous tans and vegetable dyestuffs of New Zealand, New Zealand Journal of Agriculture, 16, pp. 358-365. 1918.
  2. K. S. Gould, K. R. Markham, R. H. Smith, Manaaki Whenua - Landcare Research: Lincoln. 1998.
  3. J. I. Jeon, S. H. Ko, Y. J. Kim, S. M. Choi, K K. Kang, H. Kim, H. J. Yoon, J. M. Kim, The Flavone Eupatilin Inhibits Eotaxin Expression in an NF-${\kappa}B$-Dependent and STAT6-Independent Manner, Scandinavian Journal of Immunology, Vol. 81, No. 3. pp. 166-176. 2015. https://doi.org/10.1111/sji.12263
  4. M. J. Park, J. E. Ra, K. H. Seo, K. C.Jang, S. I. Han, J. H. Lee, Y. H. Kang, M. H. Nam, W. D. Seo, Identification and evaluation of flavone-glucosides isolated from barley sprouts and their inhibitory activity against bacterial neuraminidase, Natural Product Communications, Vol. 9, No. 10. pp. 1469-1472. 2014.
  5. G. Valdameri, J. C. Kenski, V. R. Moure, Trombetta-Lima M, Martinez GR, Sogayar MC, Winnischofer SM, Rocha ME. Flavone induces cell death in human hepatoma HepG2 cells, Natural Product Communications, Vol. 9, No. 10. pp. 1457-1460. 2014.
  6. N. Sasaki, Y. Nishizaki, E. Yamada, F. Tatsuzawa, T. Nakatsuka, H. Takahashi, M. Nishihara, Identification of the glucosyltransferase that mediates direct flavone C-glucosylation in Gentiana triflora, FEBS Lettets, Vol. 589, No. 1. pp. 182-187. 2015. https://doi.org/10.1016/j.febslet.2014.11.045
  7. Z. Benayad, C. Gomez-Cordoves, N. E .Es-Safi, Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis, Intetnational Journal of Molecular Sciences, Vol. 15, No. 11. pp. 20668-20685. 2014. https://doi.org/10.3390/ijms151120668
  8. W. Zhu, B. Yang, H. Fu, L. Ma, T. Liu, R. Chai, Z. Zheng, Q., Zhang, G. Li, Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells, Biochemical and Biophysical Research Communications, Vol. 459, No. 3. pp. 590-595. 2015.
  9. B. Jayaprakasam, A. G. K. V. Damu,Rao, D. Gunasekar, A. Blond, B. Bodo, 7-O-Methyltetrahydroochnaflavone, a new biflavanone from Ochna beddomei, Journal of Natural Products, Vol. 63, No. 4. pp. 507-508. 2000. https://doi.org/10.1021/np9902993
  10. D. U. Chandra, T. Debnath, D. Sen, S, Debnath. Three-dimensional quantitative structure-activity relationships and docking studies of some structurally diverse flavonoids and design of new aldose reductase inhibitors, Journal of Advanced Pharmaceutical Technology & Research, Vol. 6, No. 1. pp. 13-18. 2015. https://doi.org/10.4103/2231-4040.150366
  11. K. Ishimaru, K. Nishikawa, T. Omoto, I. Asai, K. Yoshihira, K. Shimomura, Two flavone 2'-glucosides from Scutellaria baicalensis, Phytochemistry. Vol. 40, No. 1. pp. 279-81. 1995. https://doi.org/10.1016/0031-9422(95)00200-Q
  12. Y. Saito, M. Kishimoto, Y. Yoshizawa, S. Kawaii, Synthesis and Structure-Activity Relationship Studies of Furan-ring Fused Chalcones as Antiproliferative Agents, Anticancer Research, Vol. 35, No. 2. pp. 811-817. 2015.
  13. T. J. Mosmann, Rapid colorimetric assays for cellular growth and survival: application of proliferation and cytotoxicity assays, Journal of Immunological Methods, Vol. 65, No. 1-2, pp. 55-63. 1983. https://doi.org/10.1016/0022-1759(83)90303-4
  14. Y. P. Keeper, P. E. Pozao, G. T. Peters, J. A. Otte, B. Winograd, H. M. Pinedo, Comparison of the sulforhodamine B. protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing, European Journal of Cancer, Vol. 27, No. 7. pp. 897-900. 1991. https://doi.org/10.1016/0277-5379(91)90142-Z
  15. K. V. Rao, K. Sreeramulu, C. V. Rao, D. Gunasekar, M. T. Martin, B. Bodo, Two new biflavonoids from Ochna obtusata, Journal of Natural Products, Vol. 60, No. 6. pp. 632-634. 1997. https://doi.org/10.1021/np9604590
  16. K. Likhitwitayawuid, R., Rungserichai, N. Ruangrungsi, T. Phadungcharoen, Flavonoids from Ochna integerrima, Phytochemistry, Vol. 56, No. 4. pp. 353-357. 2001. https://doi.org/10.1016/S0031-9422(00)00409-X
  17. J. S. Lee, J. G. Chung, H. J. Oh, Y. S. Na, S. H. Baek, Antifungal activity of the crude extract from Quintinia acutifolia on the dermatophytic fungus, Korean Journal of Oriental Physiology & Pathol.ogy, Vol. 19, No. 2. pp. 508-510. 2005.