DOI QR코드

DOI QR Code

Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC

서로 다른 친수성구조를 가지는 고분자전해질 연료전지용 멀티블록형 술폰산화 폴리아릴렌에테르술폰 전해질막의 합성 및 특성 분석

  • Yuk, Jinok (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Lee, Sojeong (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Yang, Tae-Hyun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Bae, Byungchan (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
  • 육진옥 (한국에너지기술연구원 연료전지연구실) ;
  • 이소정 (한국에너지기술연구원 연료전지연구실) ;
  • 양태현 (한국에너지기술연구원 연료전지연구실) ;
  • 배병찬 (한국에너지기술연구원 연료전지연구실)
  • Received : 2015.04.20
  • Accepted : 2015.05.14
  • Published : 2015.05.31

Abstract

Multi-block sulfonated poly(arylene ether sulfone) (SPAES) copolymer was synthesized via nucleophilic aromatic substitution reaction for proton exchange membrane fuel cell application. After synthesizing the hydrophilic and hydrophobic precursor oligomers having different end-groups (F-terminated or OH-terminated), the effect of end group on the molecular weight was investigated. Hydrophilic oligomers with hydroquinone showed better performance as fuel cell membranes. SPAES membranes showed comparable proton conductivity to that of Nafion at $80^{\circ}C$ and above 70% RH. In particular, SPAES 9 with hydroquinone showed higher proton conductivity than SPAES 10 in the whole RH range studied. Increased local concentration of sulfonic acids within hydrophilic block might develop the hydrophilic-hydrophobic phase separation in the block copolymers.

방향족 친핵성 치환반응을 이용하여 멀티블록형 sulfonated poly(arylene ether sulfone)(SPAES) 공중합체를 합성하였다. 서로 다른 말단(F- 또는 OH-말단)을 가지는 친수성 및 소수성 올리고머를 합성한 후 이를 이용하여 고분자 전해질 막을 합성하였다. 각기 다른 말단이 블록공중합체의 분자량에 미치는 영향을 분석하였고, 서로 다른 친수성구조가 블록고분자의 특성에 어떠한 영향을 미치는지 분석하였다. 합성된 멀티블록고분자는 70%이상의 습도에서 나피온 막과 비슷하거나 우수한 이온전도도를 나타내었고, 특히 SPAES 9의 경우 전습도 영역에서 SPAES 10보다 높은 이온전도도를 보였는데, 이는 친수성 블록내의 술폰산기의 부분 농도가 높아짐에 따라 친수성-소수성 간의 상분리가 발달되어 이온전도도가 향상된 것으로 보인다.

Keywords

References

  1. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath, 'Alternative Polymer Systems for Proton Exchange Membranes (PEMs)' Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  2. B. Liu, W. Hu, G. P. Robertson and M. D. Guiver, 'Poly(aryl ether ketone)s with carboxylic acid groups: synthesis, sulfonation and crosslinking', J. Mater. Chem., 18, 4675 (2008). https://doi.org/10.1039/b806690f
  3. N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida and M. Watanabe, 'Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications', J. Am. Chem. Soc., 128, 1762 (2006). https://doi.org/10.1021/ja0571491
  4. Y. Yin, Y. Suto, T. Sakabe, S. Chen, S. Hayashi, T. Mishima, O. Yamada, K. Tanaka, H. Kita and K.-I. Okamoto, 'Water Stability of Sulfonated Polyimide Membranes', Macromolecules, 39, 1189 (2006). https://doi.org/10.1021/ma0523769
  5. Y. Lim, D. Seo, S. Lee, Md. Islam, D. Kang and W. G. Kim, 'Synthesis and Characterization of Poly(ether Sulfone)s Containing Bisphenol-TP for PEMFC', Trans. Korean Hydrogen and New Energ. Soc., 21, 307 (2010).
  6. H. Lee, Y. Choi, T.-H. Yang and B. Bae, 'Hydrocarbon Composite Membranes with Improved Oxidative Stability for PEMFC'. J. Kor. Electrochem. Soc., 17, 44 (2014). https://doi.org/10.5229/JKES.2014.17.1.44
  7. H. Ghassemi, J. E. McGrath and T. A. Zawodzinski, 'Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell', Polymer, 47, 4132 (2006). https://doi.org/10.1016/j.polymer.2006.02.038
  8. B. Bae, T. Yoda, K. Miyatake, H. Uchida and M. Watanabe, 'Proton-Conductive Aromatic Ionomers Containing Highly Sulfonated Blocks for High-Temperature-Operable Fuel Cells', Angew. Chem. Int. Ed., 49, 317 (2010). https://doi.org/10.1002/anie.200905355
  9. J. Ahn, Y. Choi, T.-H. Yang, C.-S. Kim and B. Bae, 'Synthesis and Characterization of Sulfonated Poly (Arylene ether Sulfone) Multi-Block Copolymer for PEMFC Application', Trans. Korean Hydrogen and New Energ. Soc., 23, 461 (2012). https://doi.org/10.7316/KHNES.2012.23.5.461
  10. S. Lee, J. Ann, H. Lee, J.-H. Kim, C.-S. Kim, T.-H. Yang and B. Bae, 'Synthesis and characterization of crosslinkfree highly sulfonated multi-block poly(arylene ether sulfone) multi-block membranes for fuel cells', J. Mater. Chem. A., 3, 1833 (2015). https://doi.org/10.1039/C4TA05887A
  11. J. Ahn, H. Lee, T.-H. Yang, C.-S. Kim and B. Bae, 'Synthesis and Characterization of Multiblock Sulfonated Poly(arylene ether sulfone) Membranes with Different Hydrophilic Moieties for Application in Polymer Electrolyte Membrane Fuel Cell', J. polym. Sci. Part A: polym. Chem., 52, 2947(2014). https://doi.org/10.1002/pola.27330

Cited by

  1. Decal Transfer Method of Hydrocarbon Membranes for Fabricating a Membrane Electrode Assembly (MEA) vol.13, pp.3, 2017, https://doi.org/10.7849/ksnre.2017.9.13.3.051
  2. Electrospun Poly(Ether Sulfone) Membranes Impregnated with Nafion for High-Temperature Polymer Electrolyte Membrane Fuel Cells vol.19, pp.1, 2016, https://doi.org/10.5229/JKES.2016.19.1.9