DOI QR코드

DOI QR Code

Thermal Dispersion Method for a Medical Ultrasonic Phased Array Transducer

의료용 초음파 위상배열 트랜스듀서의 열 분산 방안

  • Received : 2015.03.03
  • Accepted : 2015.04.28
  • Published : 2015.05.31

Abstract

When the driving voltage of an ultrasound transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer that can cause patient's skin burn and degradation of transducer performance. Hence, in this paper, a method to disperse the heat of the transducer has been studied. The phased array transducer having 3 MHz center frequency and 32 channels was selected for analyses of the thermal dispersion. First, mechanism of the heat generation was investigated in relation to the transducer operation through theoretical analysis, and material damping and sound pressure amplitude were confirmed to be influential on the heat generation. Further, we investigated the effects of the properties of the materials constituting the transducer on the thermal dispersion through finite element analysis. Based on the analysis results, we determined the thermal properties of the constituent materials that could facilitate the thermal dispersion inside the transducer. The determined thermal properties were applied to the finite element model, and the results showed that the maximum temperature at an acoustic lens contacting with a patient was decreased to 51 % of its initial value.

초음파 영상 품질의 향상을 위해 트랜스듀서의 구동전압을 높이게 되면 트랜스듀서에서 열이 발생하여 환자의 피부 화상 및 트랜스듀서의 성능 저하를 초래할 수 있다. 따라서, 이렇게 온도가 상승하지 않도록 트랜스듀서 내의 열을 효율적으로 분산할 수 있는 방안에 대해 연구하였다. 이때 열 분산 해석 대상으로 중심주파수가 3 MHz이고 32채널을 가진 위상배열 트랜스듀서를 선정하였다. 먼저 트랜스듀서의 동작에 따른 발열 구조를 이론적으로 분석하였고, 그 결과로서 재료의 감쇠와 음압의 크기가 발열에 영향을 미치는 것을 확인하였다. 나아가 유한요소 해석을 통해 트랜스듀서 구성소자의 물성이 열 분산에 미치는 영향을 분석하였다. 분석된 결과를 바탕으로 트랜스듀서 내 열이 잘 분산되기 위한 구성소자의 열물성을 정하였다. 도출된 열 물성을 유한요소 해석 모델에 적용한 결과 환자와 접촉되는 부분인 음향렌즈의 최고온도가 원래 값의 51 %로 저하되었다.

Keywords

References

  1. W. L. Nyborg, "Heat generation by ultrasound in a relaxing medium," J. Acoust. Soc. Am. 70, 310-312 (1981). https://doi.org/10.1121/1.386778
  2. T. L. Szabo, "Time domain wave equations for lossy media obeying a frequency power law," J. Acoust. Soc. Am. 96, 491-500 (1994). https://doi.org/10.1121/1.410434
  3. D. J. Powell, J. Mould, and G. L. Wojcik, "Dielectric and mechanical absorption mechanisms for time and frequency domain transducer modeling," in Proc. IEEE Ultrason. Symp., 1019-1027 (1998).
  4. K. L. Gentry, M. L. Palmeri, N. Sachedina, and S. W. smith, "Finite element analysis of temperature rise from an integrated 3-D intracardiac echo and ultrasound ablation transducer," in Proc. IEEE Ultrason. Symp. 122-125 (2004).
  5. S. Wang, V. Frenkel, and V. Zderic, "Optimization of pulsed focused ultrasound exposures for hyperthermia applications," J. Acoust. Soc. Am. 130, 599-609 (2011). https://doi.org/10.1121/1.3598464
  6. R. Samanipour, M. Maerefat, and H. R. Nejad, "Numerical study of the effect of ultrasound frequency on temperature distribution in layered tissue," J. Therm. Biolo. 38, 287-293 (2013). https://doi.org/10.1016/j.jtherbio.2013.03.002
  7. P. Gelat, G. T. Haar, and N. Saffari, "A comparison of methods for focusing the field of a HIFU array transducer through human ribs," Phys. Med. Biol. 59, 3139-3171 (2014). https://doi.org/10.1088/0031-9155/59/12/3139
  8. A. C. S. Parr, R. L. O'Leary, G. Hayward, and G. Smillie, "Improving the thermal stability of 1-3 piezoelectric composite transducers manufactured using thermally conductive polymeric fillers," in Proc. IEEE Ultrason. Symp. 362-365 (2003).
  9. A. C. S. Parr, R. L. O'Leary, and G. Hayward, "Improving the thermal stability of 1-3 piezoelectric composite transducers," IEEE Trans. Ultrason, Ferroelect. Freq. Contr. 52, 550-563 (2005). https://doi.org/10.1109/TUFFC.2005.1428036
  10. J. L. Butler, A. L. Butler, and S. C. Butler, "Thermal model for piezoelectric transducers (L)," J. Acoust. Soc. Am. 132, 2161-2164 (2012). https://doi.org/10.1121/1.4748583
  11. R. Ramesh, R. K. Kumar, and T. K. V. Kumar, "Heat generation in 1-3 piezoceramic-polymer composites," J. Electroceram. 30, 251-257 (2013). https://doi.org/10.1007/s10832-013-9791-2
  12. A. S. Ergun, S. Barnes, and E. Gardner, "An assessment of the thermal efficiency of capacitive micromachined ultrasonic transducers," in Proc. IEEE Ultrason. Symp. 420-430 (2007).
  13. P. Vasiljev, D. Mazeika, and S. Borodinas, "Minimizing heat generation in a piezoelectric Langevin transducer," in Proc. IEEE Ultrason. Symp. 2714-2717 (2012).
  14. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, Fourth Edition (John Wiley & Sons, New York, 2000), pp. 211-212, 529-531, 508-509.
  15. J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, Third Edition (Courier Dover Publications, New York, 2008), pp. 54-56.
  16. Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, Second Edition (McGraw-Hill, New York, 1994), pp. 186-189.
  17. R. McKeighen, "Finite element simulation and modeling of 2-D arrays for 3-D ultrasonic imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48, 1395-1405 (2001). https://doi.org/10.1109/58.949749