DOI QR코드

DOI QR Code

Characteristics on Silicon Oxynitride Stack Layer of ALD-Al2O3 Passivation Layer for c-Si Solar Cell

결정질 실리콘 태양전지 적용을 위한 ALD-Al2O3 패시베이션 막의 산화질화막 적층 특성

  • Cho, Kuk-Hyun (Graduate school of Energy Science and Technology, Chungnam National University) ;
  • Cho, Young Joon (Graduate school of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Graduate school of Energy Science and Technology, Chungnam National University)
  • 조국현 (충남대학교 에너지과학기술대학원) ;
  • 조영준 (충남대학교 에너지과학기술대학원) ;
  • 장효식 (충남대학교 에너지과학기술대학원)
  • Received : 2015.04.02
  • Accepted : 2015.05.07
  • Published : 2015.05.27

Abstract

Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) $Al_2O_3$. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect $Al_2O_3$ passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD $Al_2O_3$ film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. $Al_2O_3$/SiON stacks coated at $400^{\circ}C$ showed higher lifetime values in the as-stacked state. In contrast, a high quality $Al_2O_3$/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of $200^{\circ}C$ after the firing process. The best lifetime was achieved with stack films fired at $850^{\circ}C$. These results demonstrated the potential of the $Al_2O_3/SiON$ passivated layer for crystalline silicon solar cells.

Keywords

References

  1. S. C. Roh and H. I. Seo, J. Semicond. Display Technol., 10, (1) March (2011).
  2. B Liao, R Stangl, F Ma, T Mueller, F Lin, A G Aberle, C S Bhatia and B Hoex, J. Phys. D: Appl. Phys., 46, 385102 (2013). https://doi.org/10.1088/0022-3727/46/38/385102
  3. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett., 89, 042112 (2006). https://doi.org/10.1063/1.2240736
  4. V. Naumann, M. Otto, R.B. Wehrspohn, M. Werner, C. Hagendorf, Silicon PV: April 03-05, 2012, Leuven, Belgium.
  5. Y. Zhao, C. Zhou, X. Zhang, P. Zhang, Y. Dou, W. Wang, X. Cao, B. Wang, Y. Tang and S. Zhou, Nanoscale Res. Lett., 8, 114 (2013). https://doi.org/10.1186/1556-276X-8-114
  6. S. Bordihn, P. Engelhart, V. Mertens, G. Kesser, D. Kohn, G. Dingemans, M. M. Mandoc, J. W. Muller and W. M. M. Kessels, Silicon PV: 17-20 April 2011, Freiburg, Germany.
  7. S. H. Lee, J. Korean Phys. Soc., 39(2), 369 (2001).
  8. S. Gatz, J. Muller, T. Dullweber, and R. Brendel, Silicon PV: April 03-05, 2012, Leuven, Belgium.
  9. B. Kafle, S. Kuehnhold, W. Beyer, S.Lindekugel, P. Saint-Cast, M. Hofmann and J. Rentsch, 27th EU PVSEC P. 1788-1792.
  10. S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl and J. W. Barth, Thin Solid Films, 425, 216 (2003). https://doi.org/10.1016/S0040-6090(02)01262-2
  11. S. Kuhnhold, P. Saint-Cast, B. Kafle, M. Hofmann, F. Colonna and M. Zacharias, J. Appl. Phys., 116, 054507 (2014). https://doi.org/10.1063/1.4891634
  12. S. Kuhnhold, B. Kafle, L. Kroely, P. Saint-Cast, M. Hofmann, J. Rentsch and R. Preu, Energy Procedia, 27, 273 (2012). https://doi.org/10.1016/j.egypro.2012.07.063
  13. A. Roy Chowdhuri, C. G. Takoudis, R. F. Klie and N. D. Browning, Appl. Phys. Lett., 80, 4241 (2002). https://doi.org/10.1063/1.1483903
  14. G. Dingemans, W. Beyer, M. C. M. van de Sanden and W. M. M. Kessels, Appl. Phys. Lett., 97, 152106 (2010). https://doi.org/10.1063/1.3497014