DOI QR코드

DOI QR Code

Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application

다공성 SiC-Si 복합체의 전기비저항에 미치는 Si 첨가량의 영향

  • Jun, Shinhee (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Wonjoo (Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan)
  • 전신희 (울산대학교 첨단소재공학부) ;
  • 이원주 (한국화학연구원 그린정밀화학연구센터) ;
  • 공영민 (울산대학교 첨단소재공학부)
  • Received : 2015.04.30
  • Accepted : 2015.05.14
  • Published : 2015.05.27

Abstract

To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.

Keywords

References

  1. K. J. Kim, K. Y. Lim, Y. W. Kim, M. J. Lee, and W. S. Seo, J. Eur. Ceram. Soc., 34, 1695 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.01.004
  2. S. H. Lee and H. D. Kim, Ceramist (in Korean), 13(6), 26 (2010).
  3. K. Pellisier, T. Chartier, and J. M. Laurent, Ceram. Int., 24, 371 (1998). https://doi.org/10.1016/S0272-8842(97)00024-2
  4. D. Galsterer, N. Travitzky, T. Wolff, and P. Greil, Adv. Eng. Mater., 10(12), 1134 (2008). https://doi.org/10.1002/adem.200800176
  5. C. Benaqqa, M. Gmina, A. Beurotte, M. Boussuge, B. Delattre, K. Pajot, E. Pawlak, and F. Rodrigues, Appl. Therm. Eng., 62, 599 (2014). https://doi.org/10.1016/j.applthermaleng.2013.10.024
  6. K. Ohno, J. Korean Ceram. Soc., 45(9), 497 (2008). https://doi.org/10.4191/KCERS.2008.45.9.497
  7. Y. Aihara, S. Hanzawa, and T. Komiyama, Patent, EP0885858B1.
  8. S. Suyama, T. Kameda, and Y. Itoh, Diam. Relat. Mater., 12, 1201 (2003). https://doi.org/10.1016/S0925-9635(03)00066-9
  9. K. J. Kim, K. Y. Lim, Y. W. Kim, M. J. Lee, and W. S. Seo, J. Euro. Ceram. Soc., 34, 1695 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.01.004
  10. S. H. Lee, J. Am. Ceram. Soc., 94(9), 2746 (2011). https://doi.org/10.1111/j.1551-2916.2011.04688.x
  11. T. Yamamoto, H. Kitaura, Y. Kodera, T. Ishii, M. Ohyanagi, and Z. A. Munir, J. Am. Ceram. Soc., 87(8), 1436 (2004). https://doi.org/10.1111/j.1551-2916.2004.01436.x
  12. I. H. Song, J. H. Ha, M. J. Park, H. D. Kim, and Y. W. Kim, J. Ceram. Soc. Jpn., 120(9), 370 (2012). https://doi.org/10.2109/jcersj2.120.370
  13. F. Siegelin, H-J. Kleebe, and L. S. Sigl, J. Mater. Res., 18(11), 2608 (2003). https://doi.org/10.1557/JMR.2003.0365
  14. Y. J. Kim, Y. S. Park, Y. W. Jung, J. B. Song, S. Y. Park, and H. J. Im, J. Korean Soc. Compos. Mater., 25(6), 172 (2012). https://doi.org/10.7234/kscm.2012.25.6.172
  15. M. Zulfequar and A. Kumar, Rev. Phys. Appl., 21, 525 (1986). https://doi.org/10.1051/rphysap:01986002109052500
  16. D. William and Jr. Callister, Materials Science and Engineering An Introduction, p.807, Sigma Press, Korea, (2009).