DOI QR코드

DOI QR Code

Optimization Design of Damping Devices for a Super-Tall Building Using Computational Platform

전산플랫폼을 이용한 초고층구조물의 감쇠장치 최적화 설계

  • Joung, Bo-Ra (Structural Design Engineering, Chang-Soft I&I) ;
  • Lee, Sang-Hyun (Department of Architectural Engineering, Dankook Univ.) ;
  • Chung, Lan (Department of Architectural Engineering, Dankook Univ.) ;
  • Choi, Hyun-Chul (Structural Design Engineering, Chang-Soft I&I)
  • 정보라 ((주)창소프트 아이앤아이) ;
  • 이상현 (단국대학교 건축공학과) ;
  • 정란 (단국대학교 건축공학과) ;
  • 최현철 ((주)창소프트 아이앤아이)
  • Received : 2014.11.14
  • Accepted : 2014.12.27
  • Published : 2015.04.30

Abstract

In the study, the effects of damping devices on damping ratio increase and wind-load reduction were investigated based on the computational platform, which is one of the parametric modeling methods. The computational platform helps the designers or engineers to evaluate the efficacy of the numerous alternative structural systems for irregular Super-Tall building, which is crucial in determining the capacity and the number of the supplemental damping devices for adding the required damping ratios to the building. The inherent damping ratio was estimated based on the related domestic and foreign researches conducted by using real wind-load records. Two types of damping devices were considered: One is inter-story installation type passive control devices and the other is mass type active control devices. The supplemental damping ratio due to the damping devices was calculated by means of equivalent static analysis using an equation suggested by FEMA. The optimal design of the damping devices was conducted by using the computational platform. The structural element quantity reduction effect resulting from the installation of the damping devices could be simply assessed by proposing a wind-load reduction factor, and the effectiveness of the proposed method was verified by a numerical example of a 455m high-rise building. The comparison between roof displacement and the story shear forces by the nonlinear time history analysis and the proposed method indicated that the proposed method could simply but approximately estimate the effects of the supplemental damping devices on the roof displacement and the member force reduction.

본 연구에서는 파라매트릭 모델링 기법을 통해 다양한 대안을 고려할 수 있도록 개발된 StrAuto(이하 전산플랫폼)을 이용하여 감쇠장치에 따른 감쇠비 증가 효과와 풍하중 저감효과를 평가하였다. 비정형 초고층구조물의 수많은 구조시스템 대안 선정을 지원하는 전산플랫폼은 설계자 또는 엔지니어에게 초기 대안을 결정하는데 있어 유용한 도구가 된다. 감쇠장치의 용량 및 추가 요구감쇠비의 크기를 산정하는 과정에서 중요한 원 구조물의 감쇠비에 대한 추정은 풍하중에 대한 실계측 자료를 기반으로 수행된 국내외 관련 연구의 결과를 사용하였다. 감쇠장치는 층간 설치형 수동형 감쇠장치와 질량형 능동형 감쇠장치 두 가지 유형을 고려하였다. 감쇠장치에 의해 추가되는 감쇠비는 FEMA에서 제안한 식을 이용하여 등가 정적 해석을 수행하여 산정하였다. 전산 플랫폼 내부에 감쇠장치의 용량을 최적화하는 알고리즘을 내장함으로써 최적의 감쇠장치 설계안을 자동적으로 도출할 수 있다. 감쇠장치 설치에 따른 물량저감 효과는 풍하중 저감계수로 평가될 수 있으며, 455m 높이의 초고층구조물을 대상으로 제안한 방법의 유효성을 검증하였다. 제안한 방법을 사용하여 비선형 시간이력 해석을 통해 얻어진 지붕층 변위와 층별 전단력을 근사적으로 추정할 수 있음을 확인하였다.

Keywords

References

  1. Brincker, R., Zhang, L., Andersen, P. (2012) Modal Identification from Ambient Response using Frequency Domain Decomposition, Proc. of the 18th International Modal Analysis Conference, San Antonio, TX. Retrieved March 11.
  2. Choi, H.C., Kim, C.K. (2012) Selection of Optimal Structural System for Complex-shaped Super-tall Building Structural Systems Using Parametric Design Technique, J. Archit. Inst. Korea, 28(1), pp.77-84.
  3. Choi, H.C. (2014) The Parametric Structural Optimization with StrAuto, J. Archit. Inst. Korea, 58(2), pp.50-54.
  4. Hartog, D. (1956) Mechanical Vibrations, 4th den. McGraw Hill, New York.
  5. Jung, H.K., Jung, J.H., Kim, H.J. (2012) Comparison of Design Code Damping Formulae and Measured Damping Ratios of Tall Buildings under Wind Loads, J. Regional Association archit. Inst. Korea, 8(1), pp.423-424.
  6. Kim, B.J., Lee, S.H., Jung, L. (2011) Design of Outrigger Damper System for Wind-Induced Vibration Control of Building Structures, J. Wind Eng. Inst. Korea, 15(4), pp.163-171.
  7. Kijewski-Correa, T., Kilpatrick, J., Kareem, A., Kwon, D.K., Bashor, R., Kochly, M., Young, B.S., Abdelrazaq, A., Galsworthy, J., Isyumov, N., Morrish, D., Sinn, R.C., Baker, W.F. (2006) Validating the Wind-Induced Response of Tall Buildings: A Synopsis of the Chicago Full-Scale Monitoring Program, J. Struct. Eng., ASCE, 132(10), pp.1509-1523. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1509)
  8. Park, G.H., Yoon, S.Y. (2012) Structural Analysis using Equivalent Models of Active Control Devices, J. Comput. Struct. Eng. Inst. Korea, 25(4), pp.339-346. https://doi.org/10.7734/COSEIK.2012.25.4.339
  9. Park, Y.J., Wen, Y.K., Ang, A.H.-S. (1986) Random Vibration of Hysteretic Systems under Bi-directional Ground Motions, Earthq. Eng. & Struct. Dyn., 14, pp.543-557. https://doi.org/10.1002/eqe.4290140405
  10. Wu, Z., Soong, T.T (1996) Design Spectra for Actively Controlled Structures based on Convex Models, Eng. Struct., 18(5), pp.41-350. https://doi.org/10.1016/0141-0296(95)00114-3
  11. Yamaguchi, H., Fujino Y., Tsumuram N. (1991) Passive Control of Structrues with TMD, Proceeding of Colloquium on Control of Structures, Part B, JSCE.
  12. Yukio, T. (2012) Amplitude Dependency of Damping in Buildings and Critical Tip Drift Ratio, Int. J. High-Rise Build., 1(1), pp.1-13.