DOI QR코드

DOI QR Code

Development of Computational Evaluation Method for Fatigue Crack Growth Rate based on Viscoplastic-Damage Model

점소성-손상모델 기반 피로균열 진전속도 전산 평가법 개발

  • Kim, Seul-Kee (Departement of Naval Architecture and Ocean Engineering, Pusan National Univ.) ;
  • Kim, Jeong-Hyeon (Departement of Naval Architecture and Ocean Engineering, Pusan National Univ.) ;
  • Lee, Chi-Seung (Departement of Naval Architecture and Ocean Engineering, Pusan National Univ.) ;
  • Kim, Myung-Hyun (Departement of Naval Architecture and Ocean Engineering, Pusan National Univ.) ;
  • Lee, Jae-Myung (Departement of Naval Architecture and Ocean Engineering, Pusan National Univ.)
  • 김슬기 (부산대학교 조선해양공학과) ;
  • 김정현 (부산대학교 조선해양공학과) ;
  • 이치승 (부산대학교 조선해양공학과) ;
  • 김명현 (부산대학교 조선해양공학과) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2014.06.26
  • Accepted : 2014.10.22
  • Published : 2015.02.28

Abstract

In this paper, computational evaluation method for fatigue crack growth rate(FCGR) based on material viscoplastic-damage model is proposed. Viscoplastic-damage model expressing material constitutive behavior of 7% nickel steel is introduced and is implemented into commercial finite element analysis(FEA) code, ABAQUS, as a user defined material subroutine(UMAT) for application in the FEA environments. Verification of developed UMAT and material parameters of material model are carried out by uniaxial tensile test simulations of 7% nickel steel. Moreover, jump-in-cycles procedure and rearrangement of critical damage are employed and also implemented to the ABAQUS UMAT for fatigue damage analysis. Typical FCGR test results such as relationship between crack length and number of cycles and relationship between da/dN and ${\Delta}K$ could be obtained from FCGR test simulation using developed UMAT and these results are compared with experimental results in order to verify of proposed computational method.

본 논문에서는 재료 점소성-손상모델을 기반으로 한 피로균열 진전속도(FCGR) 전산 평가법을 제안한다. 7% 니켈강 재료 거동을 모사하는 점소성-손상모델을 소개하고, 이의 유한요소해석 플랫폼에의 적용을 위해 상용 유한요소해석 프로그램인 ABAQUS에서 제공하는 사용자 정의 재료 서브루틴(UMAT)에 재료모델을 탑재하였다. 개발 UMAT의 검증을 위해 7% 니켈강 재료 인장시험 시뮬레이션을 수행하였으며, 이를 통해 재료정수를 획득하였다. 또한, 피로하중에 따른 손상해석에 있어 계산 시간 단축을 위한 jump-in-cycles 과정과 임계 손상 값 조정 및 피로 예비 균열 시뮬레이션을 수행하였고 이들 과정을 개발 UMAT에 탑재하여 해석을 수행하였다. 개발 UMAT을 활용하여 7% 니켈강의 상온 FCGR 테스트 시뮬레이션을 수행하였으며, 균열길이(a)와 주기 수(number of cycles)의 관계 및 1 cycle 당 균열성장량(da/dN)과 응력확대계수 진폭(${\Delta}K$)의 관계 등의 결과를 실험결과와 비교하여 검증하였다.

Keywords

References

  1. Anderson, T.L. (2005) Fracture Mechanics, 3rd ed., Taylor & Francis, New York.
  2. ASTM E647-13a (2013) Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards, vol. 3.01, ASTM International.
  3. Benallal, A., Billardon, R., Lemaitre, J. (1991) Continuum Damage Mechanics and Local Approach to Fracture : Numerical Procedures, Comput. Methods Appl. Mech. & Eng., 92, pp.141-155. https://doi.org/10.1016/0045-7825(91)90236-Y
  4. Bodner, S.R., Chan, K.S. (1986) Modeling of Continuum Damage for Application in Elastic-Viscoplastic Constitutive Equations, Eng. Fract. Mech., 25, pp.705-712. https://doi.org/10.1016/0013-7944(86)90034-2
  5. Bodner, S.R. (2002) Unified Plasticity for Engineering Applications, 1st ed., Kluwer Academic & Plenum Publishers, New York.
  6. de-Andres, A., Perez, J.L., Ortiz, M. (1999) Elastoplastic Finite Element Analysis of Threedimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading, Int. J. Solids & Struct., 36, pp.2231-2258. https://doi.org/10.1016/S0020-7683(98)00059-6
  7. Hayhurst D.R., Leckie F.A. (1977) Constitutive Equations for Creep Rupture, Acta Mater., 25, pp.1059-1070. https://doi.org/10.1016/0001-6160(77)90135-3
  8. Kwon, J.W., Yang, H.T. (2002) Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode, Trans. Korean Soc. Mach. Tool Eng., 11(3), pp.102-109.
  9. Lee, C.S., Yoo, B.M., Kim, M.H., Lee, J.M. (2013) Viscoplastic Damage Model for Austenitic Stainless Steel and Its Application to the Crack Propagation Ploblem at Cryogenic Temperatures. Int. J. Damage Mech. 22, pp.95-115. https://doi.org/10.1177/1056789511434816
  10. Lemaitre, J., Chaboche, J.L. (1990) Mechanics of Solid Materials, 1st ed., Cambridge University Press.
  11. Lemaitre, J. (1992) A Course on Damage Mechanics, 2nd ed. Springer.
  12. Lemaitre, J., Desmorat, R. (2005) Engineering Damage Mechanics, 1st ed., Springer.
  13. Moes, N., Dolbow, J., Belytschko, T. (1999) A Finite Element Method for Crack Growth without Remeshing, Int. J. Numer. Methods Eng., 46, pp.131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  14. Mishnaevsky, L.Jr. (2007) Computational Mesomechanics of Composites, 1st ed., John Wiley & Sons, New York.
  15. Roe, K.L., Siegmund, T. (2003) An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation, Eng. Fract. Mech., 70, pp.209-232. https://doi.org/10.1016/S0013-7944(02)00034-6
  16. Stolarska, M., Chopp, D.L., Moes, N., Belytschko, T. (2001) Modelling Crack Growth by Level Sets in the Extended Finite Element Method, Int. J. Numer. Methods. Eng., 51, pp.943-960. https://doi.org/10.1002/nme.201
  17. Yang, B., Mall, S., Ravi-Chandar, K. (2001) A Cohesive Zone Model for Fatigue Crack Growth in Quasibrittle Materials, Int. J. Solids & Struct., 38, pp.3927-3944. https://doi.org/10.1016/S0020-7683(00)00253-5

Cited by

  1. Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam vol.31, pp.4, 2018, https://doi.org/10.7734/COSEIK.2018.31.4.191