DOI QR코드

DOI QR Code

Optimization of Demucilage Process of Opuntia ficus-indica var. saboten Fruit using High Hydrostatic Pressure Enzyme Dissolution

고압 효소 액화 장치를 이용한 백년초 점질물 분해 공정의 최적화

  • Im, Sungbin (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Lee, Hyungjae (Department of Food Engineering, Dankook University) ;
  • Shim, Jae-Yong (Department of Food and Biotechnology, Hankyong National University) ;
  • Kim, Tae-Rahk (Department of New Business Development, LCS Biotech) ;
  • Kim, Dae-Ok (Department of Food Science and Biotechnology, Kyung Hee University)
  • 임성빈 (경희대학교 식품생명공학과) ;
  • 이형재 (단국대학교 식품공학과) ;
  • 심재용 (국립한경대학교 식품생물공학과) ;
  • 김태락 ((주)엘씨에스바이오텍) ;
  • 김대옥 (경희대학교 식품생명공학과)
  • Received : 2014.09.01
  • Accepted : 2015.04.03
  • Published : 2015.04.27

Abstract

This study aimed to develop and optimize a demucilaging process of Opuntia ficus-indica var. saboten (OFI) fruit to increase its usability as functional food ingredient and food additive. Viscozyme and Novozym 33095 as multienzyme complex having a broad spectrum of carbohydrases and pectolytic enzymes, respectively, were used in enzymatic dissolution along with high hydrostatic pressure liquefaction. To optimize the liquefaction process using high hydrostatic pressure liquefying extractor, response surface methodology with 3-factor central composite design was employed with reaction factors such as temperatures (25, 32, 40, 48, and $55^{\circ}C$), pressures (20, 40, 60, 80, and 100 MPa), and times (15, 30, 45, 60, and 75 min). At optimum conditions ($25^{\circ}C$, 100 MPa, and 58.275 min) for high hydrostatic pressure liquefaction process, the processed OFI fruit juice was predicted to have viscosity at 2.917 poise, partly due to the release of free sugars such as fructose and glucose detected using HPLC-ELSA system. The results above suggests that the OFI fruit juice with decreased viscosity may be used for various manufacturing processes of food, beverage, ice cream, and cosmetics.

Keywords

References

  1. Fernandez-Lopez, J. A. and L. Almela (2001) Application of highperformance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. J. Chromatogr. A 913: 415-420. https://doi.org/10.1016/S0021-9673(00)01224-3
  2. Son, M. J., K. Whang, and S. P. Lee (2005) Development of jelly fortified with lactic acid fermented prickly pear extract. J. Korean Soc. Food Sci. Nutr. 34: 408-413. https://doi.org/10.3746/jkfn.2005.34.3.408
  3. Lee, N. H., J. S. Yoon, B. H. Lee, B. W. Choi, and K. H. Park (2000) Screening of the radical scavenging effects, tyrosinase inhibition and anti-allergic activities using Opuntia ficus-indica. Korean J. Pharmacog. 31: 412-415.
  4. Frati, A. C., E. Jimenez, and C. R. Ariza (1990) Hypoglycemic effect of Opuntia ficus-indica in non insulin-dependent diabetes mellitus patients. Phytother. Res. 4: 195-197. https://doi.org/10.1002/ptr.2650040507
  5. Park, E. H., J. H. Kahng, S. H. Lee, and K. H. Shin (2001) An antiinflammatory principle from cactus. Fitoterapia 72: 288-290. https://doi.org/10.1016/S0367-326X(00)00287-2
  6. Galati, E. M., M. R. Mondello, D. Giuffrida, G. Dugo, N. Miceli, S. Pergolizzi, and M. F. Taviano (2003) Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) Mill. fruit juice: Antioxidant and antiulcerogenic activity. J. Agric. Food Chem. 51: 4903-4908. https://doi.org/10.1021/jf030123d
  7. Matsuhiro, B., L. E. Lillo, C. Saenz, C. C. Urzua, and O. Zarate (2006) Chemical characterization of the mucilage from fruits of Opuntia ficus indica. Carbohydr. Polym. 63: 263-267. https://doi.org/10.1016/j.carbpol.2005.08.062
  8. Cassano, A., C. Conidi, and E. Drioli (2010) Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination 250: 1101-1104. https://doi.org/10.1016/j.desal.2009.09.117
  9. Cai, W., X. Gu, and J. Tang (2008) Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohydr. Polym. 71: 403-410. https://doi.org/10.1016/j.carbpol.2007.06.008
  10. Sepulveda E., C. Saenz, E. Aliaga, and C. Aceituno (2007) Extraction and characterization of mucilage in Opuntia spp. J. Arid Environ. 68: 534-545. https://doi.org/10.1016/j.jaridenv.2006.08.001
  11. Eisenmenger, M. J. and J. I. Reyes-De-Corcuera (2009) High pressure enhancement of enzymes: A review. Enzyme Microb. Technol. 45: 331-347. https://doi.org/10.1016/j.enzmictec.2009.08.001
  12. Saenz, C., E. Sepulveda, and B. Matsuhiro (2004) Opuntia spp mucilage's: A functional component with industrial perspectives. J. Arid Environ. 57: 275-290. https://doi.org/10.1016/S0140-1963(03)00106-X
  13. Wang, T., R. Jonsdottir, H. G. Kristinsson, G. O. Hreggvidsson, J. O. Jonsson, G. Thorkelsson, and G. Olafsdottir (2010) Enzymeenhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Sci. Technol. 43: 1387-1393. https://doi.org/10.1016/j.lwt.2010.05.010
  14. Kim, D. and G. D. Han (2012) High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran. Innov. Food Sci. Emer. Technol. 16: 191-197. https://doi.org/10.1016/j.ifset.2012.05.014
  15. Opazo-Navarrete, M., G. Tabilo-Munizaga, A. Vega-Galvez, M. Miranda, and M. Perez-Won (2012) Effects of high hydrostatic pressure (HHP) on the rheological properties of Aloe vera suspensions (Aloe barbadensis Miller). Innov. Food Sci. Emer. Technol. 16: 243-250. https://doi.org/10.1016/j.ifset.2012.06.006
  16. Krebbers, B., A. M. Matser, S. W. Hoogerwerf, R. Moezelaar, M. M. M. Tomassen, and R. W. van den Berg (2003) Combined highpressure and thermal treatments for processing of tomato puree: Evaluation of microbial inactivation and quality parameters. Innov. Food Sci. Emer. Technol. 4: 377-385. https://doi.org/10.1016/S1466-8564(03)00045-6
  17. Tomlin, B.D., S. E. Jones, A. A. Teixeira, M. J. Correll, J. I. Reyes-De-Corcuera (2014) Kinetics of viscosity reduction of pectin solutions using a pectinase formulation at high hydrostatic pressure. J. Food Eng. 129: 47-52. https://doi.org/10.1016/j.jfoodeng.2014.01.005
  18. Garcia-Palazon, A., W. Suthanthangjai, P. Kajda, and I. Zabetakis (2004) The effects of high hydrostatic pressure on ${\beta}$-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria ${\times}$ ananassa). Food Chem. 88: 7-10. https://doi.org/10.1016/j.foodchem.2004.01.019
  19. Corrales M., A. F. García, P. Butz, and B. Tauscher (2009) Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 90: 415-421. https://doi.org/10.1016/j.jfoodeng.2008.07.003

Cited by

  1. Solubilization of Polysaccharide and Functional Components by High-pressure Enzyme Treatment from Ginger (Zingiber officinale Rosc.) vol.22, pp.2, 2018, https://doi.org/10.13050/foodengprog.2018.22.2.173