DOI QR코드

DOI QR Code

Study of Effectiveness of Antimicrobial on Restraining Formation of Biofilms on the Surface of Aluminum

항균제를 이용한 알루미늄 표면에 생물막 형성 억제효과 분석

  • Park, SangJun (Department of Chemical Engineering, University of Seoul) ;
  • Oh, YoungHwan (Environment & Assessment Team, FITI Testing & Research Institute) ;
  • Jo, BoYeon (Environment & Assessment Team, FITI Testing & Research Institute) ;
  • Choi, MiYeon (Environment & Assessment Team, FITI Testing & Research Institute) ;
  • Hyun, MinWoo (Environment & Assessment Team, FITI Testing & Research Institute) ;
  • Jeong, JaeHyun (Environment & Assessment Team, FITI Testing & Research Institute) ;
  • Kim, EuiYong (Department of Chemical Engineering, University of Seoul)
  • 박상준 (서울시립대학교 화학공학과) ;
  • 오영환 (FITI시험연구원 환경바이오평가팀) ;
  • 조보연 (FITI시험연구원 환경바이오평가팀) ;
  • 최미연 (FITI시험연구원 환경바이오평가팀) ;
  • 현민우 (FITI시험연구원 환경바이오평가팀) ;
  • 정재현 (FITI시험연구원 환경바이오평가팀) ;
  • 김의용 (서울시립대학교 화학공학과)
  • Received : 2015.02.03
  • Accepted : 2015.04.09
  • Published : 2015.04.27

Abstract

The antibacterial activity of a antimicrobial (organic synthetic or organic natural material) on the bacteria (Bacillus megaterium, Arthrobacter oxydans, Micrococcus luteus, Methylobacterium aquaticum) detected in the automobiles showed 99.9% bacteria decrease rate within 30 min of being in contact with the tested bacteria culture. The MIC of the organic synthetic material based antimicrobials and the organic natural material based antimicrobial on the bacteria were 31~500 mg/mL and 8~250 mg/mL, respectively. The bacteria and biofilms were formed on the surface of aluminum after 5 ~8 days in the case of addition of the organic synthetic material based antimicrobial to the MIC values for the tested bacteria culture. On the other hand, there was no proliferation of bacteria and formation of biofilms on the surface of aluminum even after 30 days in the case of addition of the organic natural material based antimicrobial to the MIC values for the tested bacteria culture. As a result, the organic natural material based antimicrobial was confirmed to be more excellent effect of inhibition of bacterial proliferation and restraint of biofilms formation than the organic synthetic material based antimicrobial.

Keywords

References

  1. Fergie, N., R. Bayston, J. P. Pearson, and J. P. Birchall (2004) Is otitis media with effusion a biofilm infection? Clin. Otolaryngol. 29: 38-46. https://doi.org/10.1111/j.1365-2273.2004.00767.x
  2. Potera, C. (1999) Forging a link between biofilms and disease. Science 283:1837-1839. https://doi.org/10.1126/science.283.5409.1837
  3. Chung, S. K. (2005) Biofilm. J. Rhinol. 12: 5-9.
  4. Gilbert, P., J. Das, and I. Foley (1997) Biofilms susceptibility to antimicrobials. Adv. Dent. Res. 11: 160-167. https://doi.org/10.1177/08959374970110010701
  5. Zhang, L., D. Pornpattananangkul, C. M. J. Hu, and C. M. Huang (2010) Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 17: 585-594. https://doi.org/10.2174/092986710790416290
  6. Privett, B. J., S. M. Deupree, C. J. Backlund, K. S. Rao, C. B. Johnson, P. N. Coneski, and M. H. Schoenfisch (2010) Synergy of nitric oxide and silver sulfadiazine against gram-negative, grampositive, and antibiotic-resistant pathogens. Mol. Pharm. 7: 2289-2296. https://doi.org/10.1021/mp100248e
  7. Kim, D. H., E. S. Lim, and W. K. Cho (2014) Design of dual functional surfaces: non-biofouling and antimicrobial activities. Polym. Sci. Technol. 25: 315-321.
  8. Kang, H. Y. (2003) Phytoncide. pp. 52-55. Historiesnet Press, Seoul, Korea.
  9. Oh, S. T. (2000) Hydrophilic - antimicrobial surface treatment technology for automobile air-conditioners. SAREK M. 29: 28-34.
  10. Ministry of food and drug safety, Korea food additives codex. http://www.mfds.go.kr. (2014).
  11. ASTM international, standard guide for assessment of antimicrobial activity using a time-kill procedure. http://www.astm.org. (2008).
  12. Park, S. J., Y. H. Oh, B. Y. Jo, J. S. Lee, and E. Y. Kim (2014) Investigation on the cause of malodor through the reproduction of chemicals. KSBB J. 29: 392-398. https://doi.org/10.7841/ksbbj.2014.29.5.392
  13. Laura, J. and V. Piddock (1990) Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. J. Appl. Bacteriol. 68: 307-318. https://doi.org/10.1111/j.1365-2672.1990.tb02880.x
  14. Block, S. S. (1991) Disinfection, sterilization, and preservation. 4th ed., pp. 229-254. Lippincott Williams & Wilkins Press, Philadelphia, USA.
  15. Kang, H. Y., S. S. Lee and I. G. Choi (1993) The antifungal activity of coniferous needle oil. J. Korean. For. En. 13: 71-77.
  16. Lee, H. Y., S. H. Baek, and D. M. Han (2001) Antimicrobial effects of chamaecyparis obtuse essential oil. Korean J. Appl. Microbiol. Biotechnol. 29: 253-257.
  17. Whittaker, R. H. and P. P. Feeny (1971) Allelochemics, chemical interactions between species. Science 171: 757-770. https://doi.org/10.1126/science.171.3973.757
  18. Dixshit, A., A. K. Singh, R. D. Triapthi, and S. N. Dixit (1979) Fungitoxic and phytotoxic studies of some essential oils. Biol. Bull. India 1: 45-51.
  19. Shapiro S., A. Meier, and B. Guggenheim (1994) The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol. Immunol.9: 202-208. https://doi.org/10.1111/j.1399-302X.1994.tb00059.x
  20. Jung, D. H. (2001) Control of food-borne microorganism. pp. 296-304. Daekwang Book, Seoul, Korea.
  21. Presterl, E., M. Suchomel, M. Eder, S. Reichmann, A. Lassnigg, W. Graninger, and M. Rotter (2007) Effects of alcohols, povidoneiodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis. J. Antimicrob. Chemoth. 60: 417-420. https://doi.org/10.1093/jac/dkm221
  22. Kang, S. K., M. K. Shin, G. S. Auh, Y. H. Chun, and J. P. Hong (2007) Antibacterial effect on oral pathogenic bacteria of phytoncide from Chamaecyparis obtusa. J. Oral Med. Pain 32: 45-55.
  23. Kang, S. K., G. S. Auh, Y. H. Chun, and J. P. Hong (2010) Effect of Chamaecyparis obtusa tree phytoncide on Candida albicans. J. Oral Med. Pain 35: 19-29.

Cited by

  1. Antimicrobial Properties and Characteristic Changes of Nylon Treated with Glycidyltrimethylammonium chloride(GTAC) and Silver nanoparticles(AgNPs) vol.28, pp.4, 2016, https://doi.org/10.5764/TCF.2016.28.4.271
  2. SeO2의 병원성 진균 Candida albicans에 대한 항균 활성 vol.31, pp.4, 2015, https://doi.org/10.7841/ksbbj.2016.31.4.312