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Abstract: This paper presents optimized artificial neural networks (ANNs) claims prediction and decision awareness framework that 
guides owner organizations in their pre-bid construction project decisions to minimize claims. The framework is composed of two 
genetic optimization ANNs models: a Claims Impact Prediction Model (CIPM), and a Decision Awareness Model (DAM).  The CIPM 
is composed of three separate ANNs that predict the cost and time impacts of the possible claims that may arise in a project. The 
models also predict the expected types of relationship between the owner and the contractor based on their behavioral and technical 
decisions during the bidding phase of the project. The framework is implemented using actual data from international projects in the 
Middle East and Egypt (projects owned by either public or private local organizations who hired international prime contractors to 
deliver the projects). Literature review, interviews with pertinent experts in the Middle East, and lessons learned from several 
international construction projects in Egypt determined the input decision variables of the CIPM. The ANNs training, which has 
been implemented in a spreadsheet environment, was optimized using genetic algorithm (GA). Different weights were assigned as 
variables to the different layers of each ANN and the total square error was used as the objective function to be minimized. Data was 
collected from thirty-two international construction projects in order to train and test the ANNs of the CIPM, which predicted cost 
overruns, schedule delays, and relationships between contracting parties. A genetic optimization backward analysis technique was 
then applied to develop the Decision Awareness Model (DAM).  The DAM combined the three artificial neural networks of the CIPM 
to assist project owners in setting optimum values for their behavioral and technical decision variables. It implements an intelligent 
user-friendly input interface which helps project owners in visualizing the impact of their decisions on the project’s total cost, original 
duration, and expected owner-contractor relationship. The framework presents a unique and transparent hybrid genetic algorithm-
ANNs training and testing method. It has been implemented in a spreadsheet environment using MS Excel® and EVOLVERTM 
V.5.5. It provides projects’ owners of a decision-support tool that raises their awareness regarding their pre-bid decisions for a 
construction project.   
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I. INTRODUCTION 

Construction projects are characterized by being highly 
dynamic, globally competitive, and increasingly 
challenging. The subtle aspects relevant to the political, 
economical, and cultural differences of the contract parties 
of an international construction project in Middle Eastern 
countries (projects owned by either public or private local 
organizations who hire international prime contractors to 
deliver the projects), coupled with their diverse 
expectations may eventually lead to claims that would 
impact both the time and cost of the project.  Consequently, 
once decision to bid for an international construction 
project has been made, specific project studies and 
additional contract analysis must be undertaken to predict 
the factors that may lead to claims in each project, as well 
as their related cost and time impacts.   

Although international forms of construction contracts 
have been prepared to identify the rights and obligations of 
the contract parties and to address the risks that may be 
encountered in projects; it is almost impossible that the 

contract will cover every simple matter related to the 
project. According to Levin (1998), a claim is an 
unavoidable consequence of the construction processes. 
Thus some gaps, ambiguities and conflicts may exist in the 
contract that may result in disagreements and disputes 
regarding the contractual obligations of its parties (Fisk, 
2005). As such, when any of the parties to a contract feels 
that his or her rights have not been met by the other party, 
according to contract conditions; he or she will file a claim 
against the other party, which will probably have an impact 
on both parties.   

In Egypt, international contractors handling 
construction project are faced with several challenges that 
may lead to claims, such as (1) use of unfamiliar contract 
specifications, local materials, local labor laws, and 
regulations (e.g., the legal requirement to undergo a 
partnership with a local contractor); (2) utilization of non-
standard contract forms and (3) lack of adequate time, local 
market data, and expertise to analyze the impact of these 
challenges during the bidding stage.  The latter may hinder 
international contractors from conducting a proper risk 
management strategy prior to bid submission that may 
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subject them to potential risks, leading to damages and loss 
of profit. On the other hand, due to the scarcity of market 
data and inadequate level of experience of local owners 
with international contracts, a project owner may not be 
entirely aware of the results of his or her key project 
decisions nor the consequences of his or her behavior prior 
to or during the contract negotiation stage. 

These problems prompt developing an intelligent 
framework that can aid local/international contractors, 
working in Egypt, in predicting the impact of expected 
claims, based on the project decision variables. The 
framework also advises local owners on the optimum 
settings of the project variables that would minimize the 
negative impacts of claims during the construction stage. 
The major difficulties and challenges that are addressed by 
this research are: 
1. Handling behavioral and technical decisions of 

subjective nature during the bidding phase of the 
project and showing their consequences on the project 
outcomes. 

2. Selecting a suitable artificial intelligent technique that 
can best address the problem. 

3. Finding proper number of data cases that can provide 
reliable model outputs. 

4. Applying a transparent model that clearly demonstrates 
its various computational steps. 

5. Creating a robust tool that can help the users predict the 
outcomes of their decisions, using a simple interface 
(spread sheet environment). 

 
II. LITERATURE REVIEW 

Since the 1980s, researchers have demonstrated that 
there has been a significant potential for applying artificial 
intelligence (AI) tools to claims prediction and analysis 
(Diekmann and Kruppenbacher 1984). They recommended 
conducting further research work to develop viable claims 
analysis tools for construction professionals.  Some 
examples of these AI techniques are case-based reasoning 
(CBR), rule-based expert systems, and artificial neural 
networks (ANNs). Case-based reasoning (CBR) is an 
artificial intelligence (AI) problem solving paradigm that 
has been previously applied to predict claims, analyze bids, 
and resolve litigation cases (Arditi and Tokdemir 1999, 
Allen et al. 2000, Ashley 1990, Ashley and Rissland 1988, 
Chua and Chan 2001, Ren et al. 2001).  It simply means 
using old experiences from previous claims or litigation 
cases to reach a conclusion about new situations or cases. It 
has many advantages such as its ability to propose prompt 
solutions to problems, as well as its excellence in 
proposing solutions in domains that a decision-maker may 
have not experienced before. Moreover, CBR is unique in 
evaluating solutions when no algorithmic method is 
available for evaluation. It is also superior in interpreting 
open-ended and ill-defined concepts which can provide 
early warning of potential future problems (Kolodner 
1992). However, CBR is more applicable to situation 
classification, argumentation, solution evaluation, 
justification and case interpretation, than situations where 

conducting quantitative analysis of claims’ impacts is a 
necessity. 

Expert systems are rule-based techniques that have 
been historically applied in the area of claims management, 
owing to their capability of representing “factual 
knowledge” in specific areas of expertise and providing the 
problem-solving results that “simulates experts’ decisions” 
(Kim and Adams 1989). Not only have expert systems 
been capable of processing data, but they have also been 
capable of processing experts’ knowledge (Kim and 
Adams 1989).  Thus, expert systems offer means of storing 
and sharing knowledge that allow more people to have 
access to expertise, when no expert is available for 
consultation (Hosny et al. 1994, and Elbarkouky and Fayek 
2011).   However, expert systems are deficient in a major 
aspect compared to other artificial intelligence tools, as 
they do not support the self-learning function. 

Artificial neural networks (ANNs) are AI techniques 
that provide a “self-organizing” and “self-learning” 
forecasting tool that have been inspired by the structure of 
the “human biological system” (Caudill and Butler 1990).  
Artificial neural networks technique can be successfully 
applied to resolve complex and imprecise information 
processing problems, as one of its hallmarks is its ability to 
learn from past experiences (Sun and Xu 2011).  Chau 
(2007), who adopted a particle swarm optimization (PSO) 
model to train perceptrons in predicting the outcome of 
construction claims in Hong Kong, concluded that ANN 
has resolved the modeling problem in a cost effective 
manner.  This technique provides an “adaptive” forecasting 
method that performs well when the environment or the 
system being modeled varies with time (Boussabaine 
1996), and it does not require an assumption of a specific 
data distribution (Elhag and Wang 2007).  The previous 
characteristics of ANNs suit the dynamic and multifaceted 
problem of time and cost prediction of construction claims 
than those of the traditional approaches such as statistical 
and mathematical models.  For example, statistical 
prediction models including regression analysis may 
require predicting the relationship between project cost and 
time in advance using regression functions. This is, 
sometimes, impossible because the relation between time 
and cost is non-linear and may vary based on the project 
situation (Sun and Xu 2011).  Moreover, unlike expert 
systems, the ANNs technique does not require setting 
predestined rules between its inputs and outputs.  This is an 
advantage of the ANNs because projects, especially those 
of global contexts, are dynamic and unique in nature, 
whose specific circumstances may vary or develop over 
time.  Finally, ANNs technique has been successfully 
applied to similar construction prediction problems because 
it is capable of dealing with numerical input data (Moselhi 
et al. 1991; Gaber et al. 1992; Williams 1994; Chua et al. 
1997; Hegazy and Ayed 1998; Emsley 2002; Attalla and 
Hegazy 2003; Hosny et al. 2011; Taormina et al. 2012).   

In this paper, ANNs are integrated with genetic 
algorithms to develop a claims’ impact prediction and 
decision awareness framework for international 
construction projects in Egypt. The application of a hybrid 
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ANNs-genetic optimization method in an integrated 
spreadsheet environment clarifies the relationship between 
the input and output parameters of the model.  It also 
enables conducting a backward optimization technique to 
help setting optimum decisions (e.g., a suggested contract 
type) to achieve a given output (e.g., specific minimum 
cost impact or better owner-contractor relationship). This 
feature provides an improvement over other non-
transparent traditional ANNs training and testing 
techniques, such as the back propagation method (Hegazy 
and Ayad 1998).  Also, the use of a simple user-friendly 
interface for data input and analysis enhances the 
robustness of the models used in this framework.   

This paper is a continuation effort for previous research 
done by Hosny (2006). In the previous publication (i.e., 
Hosny 2006), the paper was oriented to investigate the 
ability to predict the claims (related to cost and time) from 
a set of historical project. The effective factors were 
selected and an appropriate ANN architecture was 
determined to be able to predict increase in cost and time 
given these set of factors. In addition, a statistical analysis 
of the data was performed to determine causes of claims.    

In the current paper, the following contributions are 
accomplished: 
• Developing a more reliable ANN prediction model to 

predict the potential relationship between owner and 
contractor 

• Investigating how to support owners’ strategic contractual 
decisions (e.g., best contract type, the general condition 
to use, project duration, etc) to reduce the severity of 
potential  claims      

• Classifying the input factors to determine the controllable 
factors that can be monitored by the owner to reduce 
claims. These factors act as decision variables during 
optimization   

• Developing a simple what-if-analysis tool to enable  the 
owner to track the impact of his or her project decisions 
on project success  

• Implementing  backward genetic optimization to 
determine the proper values of the controllable variables 
that may result in minimizing project claims  

• Developing a customizable optimization tool that enables 
the selection of variables and facilitates deciding whether 
to consider, cost, time and owner/contractor relationship 
as objectives and/or constraints. The tool ensures the 
smooth transition between being an objective or a 
constraint with the ability to specify relative weights in 
case of multi objectives. 

 
The next section describes the different components of 

the optimization framework. 
 

III. COMPONENTS OF THE CLAIMS IMPACT 
PREDICTION AND DECISION AWARENESS 

FRAMEWORK 

This section defines the components of the optimized 
artificial neural networks claims’ impacts prediction and 
decision awareness framework (Fig.1).  The framework is 

mainly composed of two ANNs genetic optimization 
models: a Claims Impacts Prediction Model (CIPM), and a 
Decision Awareness Model (DAM). 
 

 
FIGURE I 

Claims Impact Prediction and Decision Awareness Framework. 
 

The Claims Impact Prediction Model (CIPM) predicts 
the cost and time impacts of projects’ possible claims as 
well as the type of relationship between the owner and 
contractor. It is based on specific project decision variables 
that may trigger claims such as project type, project 
duration, project cost, contract type, project selection 
criteria, design status, and owner’s and contractor’s 
behaviors.  Those variables were set as the input 
parameters to the CIPM and they were determined by 
conducting literature review of construction claims, 
interviews with construction claims experts in the Middle 
East, and analysis of lessons learned of fifty-four 
international construction projects in Egypt.  The CIPM 
provides early warning to owners and contractors by 
predicting the possible delays and cost overruns that may 
impact the project due to claims, which can help 
contractors in making the decision whether to bid for an 
international construction project in Egypt or not.   

The Decision Awareness Model (DAM) includes a 
genetic algorithm Optimization Backward Analysis 
Module (OBAMo) to determine the optimum settings of 
the owner’s controllable decision variables (i.e., contract 
type, design status, and owner-contractor behavior) by 
minimizing the values of the predicted claims’ impacts—
outputs of CIPM.  The model also includes a Decision 
Awareness Module (DAMo) which implements a user-
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friendly interface that allows project owners to set project 
decision variables that are within his or her control to 
certain preferred values and visually analyze their relative 
impacts on the project cost, time, and type of relationship 
with the contractor.   

The next section describes the data collection and 
analysis phase that determined the input parameters of the 
Claims Impact Prediction Model (CIPM) and explains its 
network training and testing process, using EVOLVERTM 
V.5.5 add-in for MS Excel®. 
 

IV. DEVELOPMENT OF THE CLAIMS IMPACT 
PREDICTION MODEL (CIPM) 

 
A. Input Data Collection and Analysis Phase 

Literature review, experts’ interviews, and analysis of 
Egyptian international construction projects (projects 
owned by either public or private local organizations who 
hired international prime contractors to deliver the 
projects) were conducted to determine the input parameters 
of the Claims Impact Prediction Model (CIPM).  Those 
parameters comprised the project decision variables that 
can be controlled by the owner, such as: contract type and 
owner’s behavior towards changes as well as other input 
variables that are not within the control of the project 
owner, such as project type and inflation possibility (Hosny 
2006).  

Several research studies in the area of construction 
claims were reviewed, particularly those concerned with 
the analysis of the effect of different project characteristics 
on the occurrence of claims and those relevant to 
identifying the sources of construction claims in both 
developing and developed countries (Diekmann and Girard 
1995, Shapiro 2004, 198 Hosny 2006, Bramble and 
Callahan 2010, Mohamed et al. 2011). Then, interviews 
with construction industry experts who had more than 
twenty years of experience in managing construction 
projects in the Middle East were conducted to screen the 
identified variables and determine their possible values. 
Finally, fifty-four international projects in Egypt were 
analyzed to determine the major claims that caused delays 
and cost overruns in these projects.  

Table 1 illustrates the information gathered from these 
projects, such as project category, owner type, contractor 
type, contract condition, payment method, contract value in 
Egyptian Pounds (EGP), percentage increase in the original 
contract value and duration of these projects.  The projects’ 
counts of each category are illustrated between brackets in 
Table 1. 
Based on previous observations that were made by Hosny 
(2006), the increase in the duration and cost due to claims 
in the projects that utilized lump sum contracts was 
significantly less than those of unit price contracts.  For 
those projects that used International Federation of 
Consulting Engineers (FIDIC) contracts, the cost and 
duration increase was significantly less than the projects 
that utilized custom-made contracts, which can be referred 
to the difference in the nature between both types.  The 

relative increase in the cost and duration of the projects that 
applied custom-made contracts over those that used FIDIC 
contracts can be referred to the fact that owners who use 
FIDIC are expected to be familiar with international 
standards.  Also, the international contractors are more 
familiar with FIDIC contracts than custom-made contracts.       
Based on the data collection and analysis phase, the major 
causes of claims resulting in cost overruns and schedule 
delays of international projects in Egypt, are illustrated in 
Fig. 2.  This phase resulted in determining fourteen input 
parameters to the CIPM that instigated project claims in 
international construction projects in Egypt.  

 
TABLE I 

Data of Fifty-Four Egyptian International Construction Projects 

   
 

 
FIGURE II 

Major Factors Causing Schedule Delays and Cost overruns in 
International Construction Projects in Egypt (adapted, Hosny 2006) 

 
Table 2 illustrates the project decision input variables 

as well as their possible attribute values.  It also shows 
whether those variables could be controlled by the owner 
prior to the bidding stage or not. 
 
B. CIPM Model Training and Testing Phase 

The Claims Impact Prediction Model (CIPM) is 
composed of three stand-alone ANNs, as suggested by 
Hosny (2006). Each has a different prediction purpose 
based on the training and testing results of the fourteen 
parameters (input nodes) and the output node of each 
ANN. The first artificial neural network (ANN1) predicts 
the percentage category of project cost increase due to 
possible claims.  The values of its output parameter are 
classified into four categories: (1) 0-10%, (2) 10-20%), (3) 
20-30% and (4) >30%. The second artificial neural 
network (ANN2) predicts the percentage category of 
duration increase due to possible claims.  The values of its 
output parameter are also classified into four categories: (1) 
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0-10%, (2) 10-20%, (3) 20-40% and (4) >40%.   The third 
artificial neural network (ANN3) predicts the resultant 
owner-contractor relationship in terms of whether it is 
going to be (1) friendly, (2) neutral or (3) adverse.  Three-
layers were created for each of the three ANNs: one input 
layer, one hidden layer, and one output layer that can be 
outlined as follows: 
 

TABLE II  
Input and Output Variables of the ANNs of the CIPM 

 
 
1. The input layer had 14 neurons that represented the 

fourteen input parameters illustrated in Table 2. 
2. The hidden layer had 7 neurons which is half the 

number of neurons of the input layer as recommended 
by Hegazy and Ayed (1998). 

3. The output layer of each ANN included one neuron 
which represents the percentage impact category of the 
project cost, duration and owner-contractor relationship 
in ANN1, ANN2 and ANN3 respectively.  
 
The external and internal structure of the three ANNs of 

the CIPM and their components are illustrated in Fig. 3. 
The three ANNs have been implemented in a spreadsheet 
environment (MS Excel®) that provides an excellent 
environment for solving several construction management 
problems (Moore and Weatherford 2001, and Elhakeem 
and Hegazy 2005). Data was collected from thirty-two 
international construction projects in Egypt to implement 
and test the CIPM.   

The thirty-two projects were selected from the fifty-
four projects illustrated in Table 1 for training and testing 
purposes, based on the available data of the fourteen input 
parameters of each project.  Note that the data of the fifty-
four projects were collected prior to determining the final 

parameters used to create the ANNs, which was the reason 
why twenty two industrial projects with missing 
parameters' data were excluded. Twenty-six randomly 
selected projects were chosen for training and six for 
testing the model. Figure 4 illustrates an example of ANN1 
where the number of training cases is 26 cases, the number 
of input neurons equals to 14 inputs (project decision and 
input variables) and the number of output neurons equals to 
one neuron (percentage category of project cost increase).  

 

 
FIGURE III  

The external and internal structure of the three ANNs and their 
components 

 
Designing the ANN structure by determining the 

appropriate number of hidden layers and the number of 
neurons in each layer is an important issue for multilayer 
feed-forward networks. To determine the best structure,  an 
iterative (trial and error) process is used that relies on 
increasing the number of nodes in one and two hidden 
layers till the network reaches a desired performance for 
both training and testing sets. This process is guided by 
recommendations from previous research work. Based on 
heuristics, Hegazy et al. (1994) suggested that the number 
of hidden nodes may be set as one-half of the total input 
and output nodes. Accordingly, six, seven and eight hidden 
nodes were examined with three activation functions: 
hyperbolic tangent (tanh), exponential, and linear for 
hidden and output neurons. The best ANN structure 
(minimum error) was achieved when using: one hidden 
layer with seven neurons and hyperbolic tangent as the 
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activation function for all hidden nodes and the output 
node. 

 

 
FIGURE IV 

Implementation of ANN1 in a Spreadsheet Environment 
 

The training was carried out as an optimization problem 
where the weights of the different layers were set as 
variables and the total square error (difference between 
ANNs outputs and actual outputs of the 26 cases) was set 
as the objective function to be minimized. The 
optimization was conducted using EVOLVERTM V.5.5 
add-in for MS Excel® that applies Genetic Algorithms 
(GAs) for non-linear optimization problems. Over-fitting 
during training was handled in the proposed approach by 
continually monitoring the error resulting from the testing 
set. If the error of the testing set decreases with the 
minimization of error of the training set, the optimization 
process continues minimizing the training set error, else the 
optimization algorithm retrieves the values of best 
variables reached. The GAs settings, however, was set to 
use a population size of 100 with automatic random 
number generator seed. The crossover rate was selected to 
be 0.8 and mutation rate as 0.1. During the training process 
when there is no improvement, the mutation rate is 
increased to reduce falling in local minima.   

Figure 5 sorts and allocates both the training and testing 
results within their relevant output categories (1, 2, 3, or 4) 
in each of the three ANNs.  The percentage error in the 

training cases of ANN1 was equal to approximately 11.5% 
due to two under predicted cases and one overly predicted 
case out of the 26 training cases.  No error took place in the 
six testing cases of ANN1. The percentage error in the 
training cases of ANN2 was equal to approximately 7.6%, 
resulting from two cases that were overly predicted.  The 
error in prediction in the two cases was within the limit of 
one category of percentage duration increase. The 
percentage error in the six testing cases of ANN2 was 
16.6% (one actual case out of six was in category 3, yet it 
was predicted in category 4).  No errors did exist in both 
the training and testing cases of ANN3. 
 

 
FIGURE V  

CIPM Network Training and Testing Results 
 

Although the performance of the CIPM was 
satisfactory, training needs to incorporate more recent 
cases in order to be able to predict the expected project 
performance more accurately. Alternatively, the effect of 
each individual input variable on project performance has 
to be investigated to be able to decide on the variables to be 
eliminated or modified to improve the model. Ongoing 
research efforts are currently being implemented to 
measure the effect of each input variable on total project 
cost and duration. Moreover, the study of the cases 
revealed that some factors may have to be further detailed 
or amended to reduce claims’ impacts in international 
projects in Egypt, such as: 

 
1. Major change orders should be carefully analyzed 

before execution to measure their time and cost 
impacts. 

2. Specifications and drawings should be revised for 
completeness, consistency and coordination. 

3. Prequalification of contractors should be conducted 
prior to actual bidding phase with special emphasis on 
contractor work experience in the region, current 
workloads and personnel allocated to the project.   

4. Local owner’s behavior usually lead to adverse 
relationship between the project parties, which may 
result in cost overrun and schedule delays, and, 
consequently, to contract termination and project 
failure. Therefore, project parties should reduce their 
indifferences and think of adopting a partnering or a 
consensus approach (Elbarkouky and Fayek 2011) in 
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initiating their projects to achieve a win/win situation 
for all parties. 

 
Note that the above factors were already covered in 

higher level factors in this research study, yet they may 
need to be further detailed in future research work.  For 
example, the factor “contractor technical quality” covers 
the contractor work experience in the region, current 
workloads and project personnel. Also, the factor “Design 
status prior to construction” would consider the 
completeness of specification and drawings. In addition, 
the model also incorporates four factors that reflect the 
owner behavior in this study, yet there is always more 
room to further investigate additional subjective variables 
that may affect the owner's behavior in different projects' 
settings.  
    
C. DECISION AWARENESS MODEL (DAM) 

The Decision Awareness Model (DAM) assists project 
owners in deciding on the optimum values of their 
controllable project decisions and behavioral 
characteristics (Table 2), prior to the bidding phase of the 
project. The DAM is composed of two modules: an 
Optimization Backward Analysis Module (OBAMo) and a 
Decision Awareness Module (DAMo). The former module 
applies an optimization backward analysis technique. It 
enables the owner to decide on the optimum settings of the 
project’s controllable decision variables and his behavioral 
characteristics by minimizing the individual outputs of the 
CIPM model.  In a reverse manner, the DAMo permits a 
project owner to visualize the instant variations in the 
project cost increase, duration increase and owner-
contractor relationship. This can be achieved by modifying 
the settings of the project’s controllable decision variables 
and owner’s behavioral characteristics using a user-friendly 
input interface that has been implemented on MS Excel®.   

Figure 6 illustrates the user input interface of the 
OBAMo. This module categorizes the project variables 
into: uncontrollable (fixed) input variables, controllable 
owner behavioral decision variables and controllable 
project related decision variables. Using an optimization 
backward analysis technique, the OBAMo empowers the 
owner to decide upon the optimum settings of the project’s 
controllable decision variables and owner’s behavioral 
characteristics, by minimizing the individual outputs of the 
CIPM model or any combination thereof. 

Fig. 6a displays the predicted outputs of the CIPM 
model. The initial values are computed by running a base 
case scenario in the CIPM based on the preferences of the 
owner in setting both controllable and uncontrollable 
variables.  Figure 6b illustrates the optimization parameters 
of the OBAMo. The model includes an interactive 
“optimization builder” (Fig. 6c) that facilitates the setting 
of any of the optimization parameters as either objective 
functions to be minimized or constraints to be respected. 
The optimization builder allows combining any of the 
parameters in one objective function to be minimized. This 
can be done by using relative importance values that can be 

either integers or decimals based on the preference of the 
project owner using the “optional” relative importance 
textbox (Fig. 6c).  For example, the owner may prefer the 
project cost to be three times more significant than the 
project duration by entering the value “3” in the relative 
importance textbox of the percentage category of project 
cost increase and the value “1” in the relative importance 
textbox of the percentage category of project duration 
increase. The optimization builder also allows setting any 
of those parameters as constraints whose attributes are 
entered using a dropdown box (Fig 6c).  The values of 
those attributes are selected from the available ranges of 
the three output variables of the CIPM (Table 2).  
 

 
FIGURE VI 

Screenshot of the Optimization Backward Analysis Module (OBAMo) 
 

 
FIGURE VII 

Screenshot of the Decision Awareness Module (DAMo) 
 
Similar to the Optimization Backward Analysis Module 

(OBAMo), the Decision Awareness Module (DAMo) 
assists a project owner to visualize the different 
controllable and uncontrollable project variables, yet, 
unlike the OBAMo, it enables the owner to manually enter 
the preferred values of the controllable variables using an 
intelligent user-friendly interface (Fig. 7a). It displays the 
values of those variables (Fig. 7b) based on the attributes 
entered by the user. Then, it predicts the outcomes of every 
scenario in terms of the percentage category of project cost 
increase, project duration increase and owner-contractor 
relationship (Fig 7c). This module is an effective decision 
support tool that enables project owners to envision the 
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impact of their behavior and project controllable variables 
and come up with best combination of project and 
behavioral decisions. 
 
D. SYSTEM VALIDATION 

The learning paradigm of artificial neural networks 
includes a testing procedure, which represents the first 
verification and validation of the suitability of the approach 
and the correctness of its results. An additional face 
validation strategy has been conducted by distributing a 
questionnaire to experts and owner organizations to 
evaluate the whole system performance, and determine 
potential benefits to the industry and asses model 
credibility. Interviews were conducted with nine experts to 
introduce the system to them and illustrate its functions and 
main features. Experts were then allowed to experiment 
with the developed model and its application and compare 
to their projects. Next, each expert was asked to evaluate 
the system based on two sets of criteria related to the 
novelty/expected benefits to the construction industry of 
the two main functions of the proposed model: (1) the 
Claims Impact Prediction and (2) the Decision Awareness 
with its the backward optimization feature to support 
decision makers in their contractual decisions. The 
respondents were asked to evaluate each criterion using a 
score from 1 to 5, where 1 indicates ‘poor’ and 5 indicates 
‘excellent’. Information related to experts’ positions and 
years of expertise with a detailed summary of their 
opinions as criteria average and deviation is then presented 
as shown in Figure 8. The overall average score was 4.28 
out of 5, which is considered acceptable. 
 

 
FIGURE VIII  

System Validation - Questionnaire Results 
 

The respondents addressed some constructive 
comments to be added to future versions:  

 
1. Add help screens and notes 
2. Add sensitivity analysis 
3. Include effect of market 
4. Differentiate between PM whether internal or exterior a 

project 
5. Flexibility to add more cases to database 
6. Consider another factor related to soil type 

V. CONCLUSIONS 

This paper presents an intelligent claims prediction and 
decision awareness framework that is composed of two 

models: a Claims Impact Prediction Model (CIPM) and a 
Decision Awareness Model (DAM). The framework is  
capable of (1) identifying the possible input decisions for 
international construction projects in Egypt (mainly 
Building and Touristic  projects) that may lead to claims as 
well as defining the causes that may contribute to the 
initiation of such claims; (2) Integrating Artificial Neural 
Networks (ANNs) and Genetic Algorithms (GAs) in one 
model (the CIPM) to predict the cost and time impacts of 
possible claims, as well as the type of relationship between 
the projects parties, based on the owner’s key decisions in 
setting the project variables; (3) suggesting the optimum 
project decisions that can help minimizing the impact of 
claims using the genetic Optimization Backward Analysis 
Module (OBAMo); and (4) enabling project owners to 
predict and visualize the impact of their key decisions on 
the project using the Decision Awareness Module 
(DAMo). The ANNs were trained and tested using a 
genetic optimization technique applied through 
EVOLVERTM V.5.5 which was implemented in a user-
friendly MS-Excel spread sheet environment that improved 
on other non-transparent traditional ANNs training and 
testing methods. The framework provided projects’ owners 
and international contractors with a robust user-friendly 
decision-support tool that raises their awareness with 
regard to their pre-bid decisions using hybrid genetic 
algorithm-ANNs models. Owner organizations can benefit 
from the model in running What-If scenarios to realize the 
effect of the changes in the input variables (e.g., design 
status, owner behavior toward price, selection criteria, etc.) 
on the expected output. The developed model allows for 
backward genetic optimization to determine the values of 
the controllable variables that results in minimum effect of 
claims. Although the paper introduces a novel approach to 
predict claims and support owner organizations to reduce 
their impacts on cost and time, the developed model is 
limited only to building and touristic project types. 
Ongoing research efforts are currently being implemented 
to include other types of projects (e.g., industrial projects).   
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