DOI QR코드

DOI QR Code

논과 밭 토양의 황산염 환원세균 군집 구조 비교

Comparison of community structure of sulfate reducing bacteria in rice paddy and dry farming soils

  • 이중배 (한남대학교 대덕밸리캠퍼스 생명시스템과학과) ;
  • 박경량 (한남대학교 대덕밸리캠퍼스 생명시스템과학과)
  • Lee, Jung Bae (Department of Biological Science and Biotechnology, Hannam University) ;
  • Park, Kyeong Ryang (Department of Biological Science and Biotechnology, Hannam University)
  • 투고 : 2015.02.12
  • 심사 : 2015.03.26
  • 발행 : 2015.03.31

초록

본 연구는 논과 밭 토양의 황산염 환원세균의 군집구조와 T-RFLP 패턴을 조사한 논문으로, 유기 농법 토양과 관행 농법 토양 그리고 밭 토양 총 3종류의 토양을 8월과 11월에 채집하여 실험하였다. 토양 성분 분석 결과 총 질소, 총 탄소, 총 인의 값은 모든 토양이 비슷하게 나타났고 계절별로는 수분의 함량은 8월에, 총 탄소는 11월에 가장 높게 나타났다. 황산염 환원세균은 초산보다 젖산을 기질로 이용하는 황산염 환원세균이 더 많이 분포하고, 유기 농법 토양에 황산염 환원세균이 가장 많이 분포하는 것으로 나타났다. 각 토양에서 얻은 총 181개 클론으로 계통학적 분석을 한 결과, 대부분의 클론들은 배양 가능한 황산염 환원세균과는 매우 낮은 상동성을 보였으나, 자연계에서 확인되는 클론들과는 90% 이상의 높은 상동성을 나타내었다. T-RFLP 분석 결과 91, 357, 395, 474 bp의 분포가 가장 높았고, 계절에 따라 황산염 환원세균의 군집 구조가 달라지는 것을 확인하였다.

The goal of this study was to identify relationships between the composition of sulfate reducing bacterial assemblages and terminal restriction fragment length polymorphism (T-RFLP) patterns in rice paddy and dry farming soils. Samples of organic farming soils, conventional farming soils, and dry field farming soils were collected in August and November. Analyses of the soil chemical composition revealed similar total nitrogen, total carbon and total inorganic phosphorus levels; however, the moisture content and total carbon were higher than in the other soils in both August and November, respectively. Sulfate reducing bacteria utilizing lactic acid were more widely distributed than those that used acetic acid, and the number of sulfate reducing bacteria in organic farming soil was most abundant. Phylogenetic analysis based on 181 clones revealed that most showed low similarity with cultured sulfate reducing bacteria, but more than 90% similarity with an uncultured sulfate reducing bacteria isolated from the environment. T-RFLP analysis revealed that fragments of 91, 357, 395, and 474 bp were most common, and the community structure of sulfate reducing bacteria changed seasonally.

키워드

참고문헌

  1. Balch, W.E., Fox, G.E. Magrum, L.J., Woese, C.R., and Wolfe, R.S. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296.
  2. Barton, L.L. and Tomei, F.A. 1995. Characteristics and activities of sulfate-reducing bacteria, pp. 1-32. Peplum Press, New York, USA.
  3. Benjamin, K.H., Zhang, H., Berelson, W., and Victoria, J. 2009. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments. Appl. Environ. Microbiol. 75, 1487-1499. https://doi.org/10.1128/AEM.01812-08
  4. Burns, A.S., Pugh, C.W., Segid, Y.T., Behum, P.T., Lefticariu, L., and Bender, K.S. 2012. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Biodegradation 3, 415-429.
  5. Carmen, E.M., Yanez, C., Yoon, O.J., and Bruns, M.A. 2007. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores. Environ. Sci. Technol. 41, 5323-5329. https://doi.org/10.1021/es070555v
  6. Castro, H.F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages, pp. 27-37. Ph. D. Thesis. University of Florida.
  7. Castro, H.F., Reddy, K.R., and Ogram, A. 2002. Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl. Environ. Microbiol. 68, 6129-6137. https://doi.org/10.1128/AEM.68.12.6129-6137.2002
  8. Chauhan, A., Ogram, A., and Reddy, K.R. 2004. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 70, 3475-3484. https://doi.org/10.1128/AEM.70.6.3475-3484.2004
  9. Detmers, J., Bruchert, V., Habicht, K.S., and Kuever, J. 2001. Diversity of sulfur isotope fractionations by sulfate reducing prokaryotes. Appl. Environ. Microbiol. 67, 888-894. https://doi.org/10.1128/AEM.67.2.888-894.2001
  10. Doris, S., Wentrup, C., Braunegger, C., Deevong, P., Hofer, M., Andreas, R., Christian, B., Michael, P., Michael, W., and Alexander, L. 2011. Microorganisms with novel dissimilatory sulfite reductase genes are widespread and part of the core microbiota in low-sulfate Peatlands. Appl. Environ. Microbiol. 77, 1231-1242. https://doi.org/10.1128/AEM.01352-10
  11. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  12. Gavin, N.R., Baldwin, D.S., Watson, G.O., and Hall, K.C. 2010. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Sci. Total Environ. 409, 134-139. https://doi.org/10.1016/j.scitotenv.2010.08.062
  13. Hansel, C.M., Fendorf, S., Jardine, P.M., and Francis, C.A. 2008. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 74, 1620-1633. https://doi.org/10.1128/AEM.01787-07
  14. He, J.Z., Liu, X.Z., Zheng, Y., Shen, J.P., and Zhang, L.M. 2010. Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biol. Fertil Soils 46, 283-291. https://doi.org/10.1007/s00374-009-0426-3
  15. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  16. Kovacik, W.P., Scholten, J.C., Culley, D., Hickey, R., Zhang, W., and Brockman, F.J. 2010. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to shortterm changes in substrate feed. Microbiology 156, 2418-2427. https://doi.org/10.1099/mic.0.036715-0
  17. Lee, D.B., Lee, K.B., Kim, M.Y., Kim, B.H., Choi, M.K., and Park, S.T. 1998. Influence of spa sewage on the water quality and soil chemical properties in the near stream. Kor. Turfgrass Sci. 7, 135-147.
  18. Leloup, J., Quillet, L., Berthe, T., and Petit, F. 2006. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol. Ecol. 55, 230-238. https://doi.org/10.1111/j.1574-6941.2005.00021.x
  19. Lijing, J., Zheng, Y., Peng, X., Zhou, H., Zhang, C., Xiao, X., and Wang, F. 2009. Vertical distributionand diversity of sulfatereducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol. Ecol. 70, 249-262. https://doi.org/10.1111/j.1574-6941.2009.00758.x
  20. Park, M.A. and Chang, N.K. 1994. Mineral nutrient and productivity of three grasslands in Kimhwa. Kor. Turfgrass Sci. 8, 29-36.
  21. Pester, M., Bittner, N., Deevong, P., Wagner, M., and Loy, A. 2010. A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland. ISME J. 4, 1751-7362.
  22. Pester, M., Knorr, K.H., Friedrich, M.W., Wagner, M., and Loy, A. 2012. Sulfate-reducing microorganisms in wetlands-fameless actors in carbon cycling and climate change. Front. Microbiol. 28, 3-72.
  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. 4, 406-425.
  24. Saxena, A.G. 2013. Sulfur-cycling in methane-rich ecosystems: uncovering microbial processes and novel niches. Environ. Microbiol. 14, 3271-3286.
  25. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  26. Touzel, J.P. and Albagnac, G. 1983. Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol. Lett. 16, 241-245. https://doi.org/10.1111/j.1574-6968.1983.tb00295.x
  27. Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975-2982.
  28. Westermann, P. 1993. Wetland and swamp microbiology. In Ford, T.E. (ed.) Aquatic microbiology, pp. 215-238. Blackwell Sci. Publ., Cambridge, MA.
  29. Wind, T. and Conrad, R. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochem. 37, 253-278. https://doi.org/10.1023/A:1005760506957
  30. Wu, X.J., Pan, J.L., Liu, X.L., Tan, J., Li, D.T., and Yang, H. 2009. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Can. J. Microbiol. 55, 818-828. https://doi.org/10.1139/W09-037