참고문헌
- Balch, W.E., Fox, G.E. Magrum, L.J., Woese, C.R., and Wolfe, R.S. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296.
- Barton, L.L. and Tomei, F.A. 1995. Characteristics and activities of sulfate-reducing bacteria, pp. 1-32. Peplum Press, New York, USA.
- Benjamin, K.H., Zhang, H., Berelson, W., and Victoria, J. 2009. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments. Appl. Environ. Microbiol. 75, 1487-1499. https://doi.org/10.1128/AEM.01812-08
- Burns, A.S., Pugh, C.W., Segid, Y.T., Behum, P.T., Lefticariu, L., and Bender, K.S. 2012. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Biodegradation 3, 415-429.
- Carmen, E.M., Yanez, C., Yoon, O.J., and Bruns, M.A. 2007. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores. Environ. Sci. Technol. 41, 5323-5329. https://doi.org/10.1021/es070555v
- Castro, H.F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages, pp. 27-37. Ph. D. Thesis. University of Florida.
- Castro, H.F., Reddy, K.R., and Ogram, A. 2002. Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl. Environ. Microbiol. 68, 6129-6137. https://doi.org/10.1128/AEM.68.12.6129-6137.2002
- Chauhan, A., Ogram, A., and Reddy, K.R. 2004. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 70, 3475-3484. https://doi.org/10.1128/AEM.70.6.3475-3484.2004
- Detmers, J., Bruchert, V., Habicht, K.S., and Kuever, J. 2001. Diversity of sulfur isotope fractionations by sulfate reducing prokaryotes. Appl. Environ. Microbiol. 67, 888-894. https://doi.org/10.1128/AEM.67.2.888-894.2001
- Doris, S., Wentrup, C., Braunegger, C., Deevong, P., Hofer, M., Andreas, R., Christian, B., Michael, P., Michael, W., and Alexander, L. 2011. Microorganisms with novel dissimilatory sulfite reductase genes are widespread and part of the core microbiota in low-sulfate Peatlands. Appl. Environ. Microbiol. 77, 1231-1242. https://doi.org/10.1128/AEM.01352-10
- Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
- Gavin, N.R., Baldwin, D.S., Watson, G.O., and Hall, K.C. 2010. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Sci. Total Environ. 409, 134-139. https://doi.org/10.1016/j.scitotenv.2010.08.062
- Hansel, C.M., Fendorf, S., Jardine, P.M., and Francis, C.A. 2008. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 74, 1620-1633. https://doi.org/10.1128/AEM.01787-07
- He, J.Z., Liu, X.Z., Zheng, Y., Shen, J.P., and Zhang, L.M. 2010. Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biol. Fertil Soils 46, 283-291. https://doi.org/10.1007/s00374-009-0426-3
- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
- Kovacik, W.P., Scholten, J.C., Culley, D., Hickey, R., Zhang, W., and Brockman, F.J. 2010. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to shortterm changes in substrate feed. Microbiology 156, 2418-2427. https://doi.org/10.1099/mic.0.036715-0
- Lee, D.B., Lee, K.B., Kim, M.Y., Kim, B.H., Choi, M.K., and Park, S.T. 1998. Influence of spa sewage on the water quality and soil chemical properties in the near stream. Kor. Turfgrass Sci. 7, 135-147.
- Leloup, J., Quillet, L., Berthe, T., and Petit, F. 2006. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol. Ecol. 55, 230-238. https://doi.org/10.1111/j.1574-6941.2005.00021.x
- Lijing, J., Zheng, Y., Peng, X., Zhou, H., Zhang, C., Xiao, X., and Wang, F. 2009. Vertical distributionand diversity of sulfatereducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol. Ecol. 70, 249-262. https://doi.org/10.1111/j.1574-6941.2009.00758.x
- Park, M.A. and Chang, N.K. 1994. Mineral nutrient and productivity of three grasslands in Kimhwa. Kor. Turfgrass Sci. 8, 29-36.
- Pester, M., Bittner, N., Deevong, P., Wagner, M., and Loy, A. 2010. A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland. ISME J. 4, 1751-7362.
- Pester, M., Knorr, K.H., Friedrich, M.W., Wagner, M., and Loy, A. 2012. Sulfate-reducing microorganisms in wetlands-fameless actors in carbon cycling and climate change. Front. Microbiol. 28, 3-72.
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. 4, 406-425.
- Saxena, A.G. 2013. Sulfur-cycling in methane-rich ecosystems: uncovering microbial processes and novel niches. Environ. Microbiol. 14, 3271-3286.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
- Touzel, J.P. and Albagnac, G. 1983. Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol. Lett. 16, 241-245. https://doi.org/10.1111/j.1574-6968.1983.tb00295.x
- Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975-2982.
- Westermann, P. 1993. Wetland and swamp microbiology. In Ford, T.E. (ed.) Aquatic microbiology, pp. 215-238. Blackwell Sci. Publ., Cambridge, MA.
- Wind, T. and Conrad, R. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochem. 37, 253-278. https://doi.org/10.1023/A:1005760506957
- Wu, X.J., Pan, J.L., Liu, X.L., Tan, J., Li, D.T., and Yang, H. 2009. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Can. J. Microbiol. 55, 818-828. https://doi.org/10.1139/W09-037