DOI QR코드

DOI QR Code

초고온 고세균 Thermococcus pacificus P-4로부터 내열성 β-glucosidase의 새로운 기질 특이성

Novel substrate specificity of a thermostable β-glucosidase from the hyperthermophilic archaeon, Thermococcus pacificus P-4

  • 투고 : 2015.02.04
  • 심사 : 2015.03.13
  • 발행 : 2015.03.31

초록

Thermococcus pacificus P-4의 유전체 서열 분석을 통하여 예측되는 GH1 ${\beta}$-glucosidase를 암호화하는 유전자를 동정하였다. 그 유전자는 487 아미노산들을 암호화하는 1,464 bp 나타내었으며, 그 아미노산 서열은 Pyrococcus furiosus ${\beta}$-glucosidase와 77% 상동성을 나타내었다. 그 유전자는 Escherichia coli 시스템 내에서 복제 및 발현하였다. 재조합 된 단백질은 금속 친화크로마토그래피를 통하여 정제하고 특성을 분석하였다. 정제된 단백질(Tpa-Glu)은 pH 7.5와 $75^{\circ}C$에서 최적활성을 나타내었으며, 열안정성은 $90^{\circ}C$에서 약 6시간의 반감기를 보였다. Tpa-Glu는 pNP-${\beta}$-glucopyranoside, pNP-${\beta}$-galactopyranoside, pNP-${\beta}$-mannopyranoside, 그리고 pNP-${\beta}$-xylopyranoside 순으로 우수한 $k_{cat}/K_m$ 값을 나타내었다. 또한, Tpa-Glu는 ${\beta}$-1,3-linked polysaccharide (laminarin) 그리고 ${\beta}$-1,3-와 ${\beta}$-1,4-linked oligosaccharides에 대하여 exo-hydrolyzing 활성을 보였다. 본 연구는 초고온 고세균으로터 ${\beta}$-glucosidase가 exohydrolyzing 활성을 처음 확인한 것으로 이 효소는 laminarin의 당화공정에 ${\beta}$-1,3-endoglucanase와 함께 적용할 수 있을 것으로 기대된다.

Based on the genomic analysis of Thermococcus pacificus P-4, we identified a putative GH1 ${\beta}$-glucosidase-encoding gene (Tpa-glu). The gene revealed a 1,464 bp encoding 487 amino acid residues, and the deduced amino acid residues exhibited 77% identity with Pyrococcus furiosus ${\beta}$-glucosidase (accession no. NP_577802). The gene was cloned and expressed in Escherichia coli system. The recombinant protein was purified by metal affinity chromatography and characterized. Tpa-Glu showed optimum activity at pH 7.5 and $75^{\circ}C$, and thermostability with a half life of 6 h at $90^{\circ}C$. Tpa-Glu exhibited hydrolyzing activity against various pNP-glycopyranosides, with kcat/Km values in the order of pNP-${\beta}$-glucopyranoside, pNP-${\beta}$-galactopyranoside, pNP-${\beta}$-mannopyranoside, and pNP-${\beta}$-xylopyranoside. In addition, the enzyme exhibited exo-hydrolyzing activity toward ${\beta}$-1,3-linked polysaccharide (laminarin) and ${\beta}$-1,3- and ${\beta}$-1,4-linked oligosaccharides. This is the first description of an enzyme from hyperthermophilic archaea that displays exo-hydrolyzing activity toward ${\beta}$-1,3-linked polysaccharides and could be applied in combination with ${\beta}$-1,3-endoglucanase for saccharification of laminarin.

키워드

참고문헌

  1. Aguilar, C.F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M., and Pearl, L.H. 1997. Crystal structure of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: resilience as a key factor in thermostability. J. Mol. Biol. 271, 789-802. https://doi.org/10.1006/jmbi.1997.1215
  2. Atomi, H., Sato, T., and Kanai, T. 2011. Application of hyperthermophiles and their enzymes. Curr. Opin. Biotechnol. 22, 618-626. https://doi.org/10.1016/j.copbio.2011.06.010
  3. Bae, S.S., Kim, Y.J., Yang, S.H., Lim, J.K., Jeon, J.H., Lee, H.S., Kang, S.G., Kim, S.J., and Lee, J.H. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16, 1826-1831.
  4. Bauer, M.W., Bylina, E.J., Swanson, R.V., and Kelly, R.M. 1996. Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J. Biol. Chem. 271, 23749-23755. https://doi.org/10.1074/jbc.271.39.23749
  5. Bhatia, Y., Mishra, S., and Bisaria, V.S. 2002. Microbial ${\beta}$-glucosidases: cloning, properties, and applications. Crit. Rev. Biotechnol. 22, 375-407. https://doi.org/10.1080/07388550290789568
  6. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Cubellis, M.V., Rozzo, C., Montecucchi, P., and Rosssi, M. 1990. Isolation and sequencing of a new beta-galactosidase-encoding archaebacterial gene. Gene 94, 89-94. https://doi.org/10.1016/0378-1119(90)90472-4
  8. de Miguel Bouzas, T., Barros-Velazquez, J., and Villa, T.G. 2006. Industrial applications of hyperthermophilic enzymes: a review. Protein Pept. Lett. 13, 645-651. https://doi.org/10.2174/092986606777790548
  9. Ezaki, S., Miyaoku, K., Nishi, K., Tanaka, T., Fujiwara, S., Takagi, M., Atomi, H., and Imanaka, T. 1999. Gene analysis and enzymatic properties of thermostable beta-glycosidase from Pyrococcus kodakaraensis KOD1. J. Biosci. Bioeng. 88, 130-135. https://doi.org/10.1016/S1389-1723(99)80190-X
  10. Imanaka, T. and Atomi, H. 2002. Catalyzing "hot" reactions: enzymes from hyperthermophilic archaea. Chem. Rec. 2, 149-163. https://doi.org/10.1002/tcr.10023
  11. Kado, Y., Inoue, T., and Ishikawa, K. 2011. Structure of hyperthermophilic ${\beta}$-glucosidase from Pyrococcus furiosus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 1473-1479. https://doi.org/10.1107/S1744309111035238
  12. Kengen, S.W., Luesink, E.J., Stams, A.J., and Zehnder, A.J. 1993. Purification and characterization of an extremely thermostable ${\beta}$-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 213, 305-312. https://doi.org/10.1111/j.1432-1033.1993.tb17763.x
  13. Matsui, I., Sakai, Y., Matsui, E., Kikuchi, H., Kawarabayasi, Y., and Honda, K. 2000. Novel substrate specificity of a membranebound ${\beta}$-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. FEBS Lett. 467, 195-200. https://doi.org/10.1016/S0014-5793(00)01156-X
  14. Miroshnichenko, M.L., Gongadze, G.M., Rainey, F.A., Kostyukova, A.S., Lysenko, A.M., Chernyh, N.A., and Bonch-Osmolovskaya, E.A. 1998. Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int. J. Syst. Bacteriol. 24, 23-29.
  15. Moracci, M., Nucci, R., Febbraio, F., Vaccaro, C., Vespa, N., La Cara, F., and Rossi, M. 1995. Expression and extensive characterization of a ${\beta}$-glycosidase from the extreme thermoacidophilic archaeon Sulfolobus solfataricus in Escherichia coli: authenticity of the recombinant enzyme. Enzyme Microb. Technol. 17, 992-997. https://doi.org/10.1016/0141-0229(95)00012-7
  16. Nucci, R., Moracci, M., Vaccaro, C., Vespa, N., and Rossi, M. 1993. Exo-glucosidase activity and substrate specificity of the ${\beta}$-glycosidase isolated from the extreme thermophile Sulfolobus solfataricus. Biotechnol. Appl. Biochem. 17, 239-250.
  17. Robb, F.T., Place, A.R., Sowers, K.R., Schreier, H.J., DasSarma, S., and Fleischmann, E.M. 1995. Archaea: A Laboratory Manual, pp. 3-29. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  18. Sakellaris, H., Manners, J.M., and Pemberton, J.M. 1997. A gene encoding an exo-${\beta}$-glucosidase from Cellvibrio mixtus. Curr. Microbiol. 35, 228-232. https://doi.org/10.1007/s002849900243
  19. Schiraldi, C., Giuliano, M., and De Rosa, M. 2002. Perspectives on biotechnological applications of archaea. Archaea 1, 75-86. https://doi.org/10.1155/2002/436561

피인용 문헌

  1. Cellulases from Thermophiles Found by Metagenomics vol.6, pp.3, 2018, https://doi.org/10.3390/microorganisms6030066
  2. Progress of β-Glucosidase from Microorganisms vol.07, pp.02, 2018, https://doi.org/10.12677/AMB.2018.72010
  3. In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability vol.13, pp.4, 2015, https://doi.org/10.22207/jpam.13.4.07