DOI QR코드

DOI QR Code

Electron Spin Resonance Line-widths of Carbon Nanotubes based on the Hyperfine Interaction

  • Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University) ;
  • Cheong, Hai-Du (Division of Liberal Arts, Hanbat National University)
  • Received : 2015.03.13
  • Accepted : 2015.05.25
  • Published : 2015.06.30

Abstract

The Kubo formalism and utilizing the projection operator technique (POT) introduced by Kawabata, the electron spin resonance (ESR) line-shape formula for carbon nanotubes through the hyperfine interaction introduced earlier in terms of POT. We can see that the line-width decreases exponentially as the temperature increases. The spin relaxation time show gradual decrease as magnetic field becomes larger. The analysis reveals the peculiarities in spin relaxation inherent to one dimensional system at low temperature and weak magnetic fields. Thus, the present technique is considered to be more convenient to explain the carbon nanotubes as in the case of other optical transitions.

Keywords

References

  1. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001) https://doi.org/10.1126/science.1065824
  2. O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, and Walt A. de Heer, Phys. Rev. B 52, R6963 (1995)
  3. L. Forro et al., in "Science and Application of Nanotubes" (Tomanek and Enbody, Eds.), Kluwer Academic/Plenum Publishers, New York, 2000.
  4. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, in "Science of Fullerences and Carbon Nanotubes" (M. S. Dresselhaus, G. Dresselhaus, and P. S. Eklund, Eds.), Academic Press, New York, 1996.
  5. A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970) https://doi.org/10.1143/JPSJ.29.902
  6. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957) https://doi.org/10.1143/JPSJ.12.570
  7. J. Y. Sug, and S. D. Choi, Phys. Rev. E 55, 314 (1996)
  8. J. Y. Sug, S. G. Jo, and S. D. Choi, Phys. Rev. B 64, 235210 (2001)
  9. J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 53, 776 (2008) https://doi.org/10.3938/jkps.53.776
  10. J. I. Park, H. K. Lee, and H. R. Lee, J. Magnetics 16, 108 (2011) https://doi.org/10.4283/JMAG.2011.16.2.108
  11. J. I. Park, H. R. Lee, and S. H. Lee, Jpn. J. Appl. Phys. 51, 52402 (2012) https://doi.org/10.7567/JJAP.51.052402
  12. J. P. Salvetat, T. Feher, and L. Forro, Phys. Rev. B 72, 75440 (2005)
  13. A. Thess, R. Lee, P. Nikolaev, H. Dai, and P. Petit, Science 273, 483 (1996) https://doi.org/10.1126/science.273.5274.483
  14. T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005) https://doi.org/10.1143/JPSJ.74.777
  15. V. Barone, J. Chem. Phys. 101, 6834 (1994) https://doi.org/10.1063/1.468312
  16. K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999) https://doi.org/10.1038/44108
  17. C. K. Yang, J. Zhao, and J. P. Lu, Phys Rev. Lett. 90 , 257203 (2003) https://doi.org/10.1103/PhysRevLett.90.257203
  18. Y. G. Semenov, Phys. Rev. B 67, 115319 (2003)