

Journal of the Korean Magnetic Resonance Society 2015, 19, 29-35 DOI 10.6564/JKMRS.2015.19.1.029

Ferroelectric-Paraelectric Phase Transition of CsH₂PO₄ studied by Static NMR and MAS NMR

Ae Ran Lim^{1*} and Kwang-Sei Lee²

¹Department of Science Education, Jeonju University, Jeonju 560-759, Korea ²Department of Nano Science & Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Korea

Received Mar 31, 2015; Revised May 4, 2015; Accepted May 14, 2015

Abstract The microscopic dynamics of CsH_2PO_4 , with two distinct hydrogen bond lengths, are studied by static nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The proton dynamics of the two crystallographically inequivalent hydrogen sites were discussed in terms of the ¹H NMR and ¹H MAS NMR spectra. Although the hydrogen bonds have two inequivalent sites, H(1) and H(2), distinct proton dynamics for the two sites were not found. Further, the ¹³³Cs spectrum is more or less continuous near T_{C1} (=153 K). Finally, the phase transition mechanism of T_{C1} in CsH₂PO₄ is related to the ordering of protons.

Keywords Single crystal; Structural geometry; Ferroelectric; Nuclear magnetic resonance

Introduction

Anhydrous proton-conducting materials have attracted interest in recent years because of their potential applications in fuel cells¹. Cesium dihydrogen phosphate, CsH₂PO₄, belongs to a group of compounds that have properties intermediate between those of a normal salt and an acid, and undergoes a transition from a paraelectric phase to a superprotonic phase at 503 K $(=T_{C2})^{2-6}$. It is well known that the superionic phase transition of CsH₂PO₄ from the monoclinic to the cubic phase significantly increases its protonic conductivity7,8. Recent advances in solid acid fuel cells have demonstrated the usefulness of pure CsH₂PO₄ as an electrolyte in both hydrogen and direct methanol fuel cells⁹. The proton transport mechanism in solid acids is a subject of intensive experimental and theoretical studies¹⁰⁻¹². However. the simultaneous decomposition and dehydration of CsH₂PO₄ above 500 K complicate the interpretation of the phenomena¹³⁻¹⁶. CsH₂PO₄ belongs to a family of structurally disordered protonic conductors that possess superionic phases¹⁷. It exhibits one of the largest conductance values in the high temperature phase. In addition, the CsH₂PO₄ crystal undergoes a phase transition at 153 K (=T_{C1}) and exhibits ferroelectricity below 153 K. It has a second-order ferroelectric phase transition with spontaneous polarization along the monoclinic $b \operatorname{axis}^{18-20}$.

Yamada et al. ²¹ investigated the paraelectric to superionic phase transition of CsH_2PO_4 by using X-ray diffraction and nuclear magnetic resonance (NMR). They suggested a reorientational jump of the

^{*} Address correspondence to: Ae Ran Lim, Tel: +82-(0)63-220-2514; Fax: +82-(0)63-220-2053; E-mail: aeranlim@hanmail.net, arlim@jj.ac.kr

 $H_2PO_4^-$ anion above 420 K from the temperature dependence of the ¹H and ³¹P NMR results. Further, Iwata et al. ²² found that the phase transition of T_{C1} in CsH₂PO₄ was also connected with a rotation of the PO₄ tetrahedra. The ionic conduction behavior of the superprotonic phase of CsH₂PO₄ was recently examined by determining the ¹H NMR spin-lattice relaxation time²³. In addition, the temperature variation in the electric field gradient (EFG) tensor at the ¹³³Cs sites in CsH₂PO₄ has been reported in the paraelectric and ferroelectric phases. The EFG tensor components decrease in absolute value with decreasing temperature, showing no anomaly at T_{C1} ²⁴. Further, the ¹³³Cs spin-lattice relaxation time of CsH_2PO_4 has been determined near T_{C1} , and the anomalously short values of T1 were found to be a result of the critical temperature dependence 25 . Previously, Blinc et al.²⁵ investigated this relaxation rate over the phase transition temperature range, albeit at a much lower field. Furthermore, the theory that describes the temperature dependence of 133 Cs T₁ was developed on the basis of proton dynamics and of how it affects EFG fluctuations on the ¹³³Cs sites. This result shows how the spin-lattice relaxation rate of ¹³³Cs peaks at T_{C1}, showing critical behavior, and drops back to a steady and larger value, only a few kelvin away from the transition temperature.

In this study, we examine the integrated signal area, NMR spectrum, and spin-lattice relaxation times in the laboratory frame, T₁, and in the rotating frame, T_{1p} , for ¹H and ¹³³Cs in CsH₂PO₄ in the ferroelectric and paraelectric phases, respectively. The well separated static NMR and magic angle spinning (MAS) NMR line components of the crystallographically inequivalent proton sites in CsH₂PO₄ have provided us with a unique opportunity to study the distinct proton dynamics associated with the different hydrogen bond lengths. In this work, we are able to distinguish between the sites of the two inequivalent protons in CsH_2PO_4 , H(1) and H(2).

Crystal Structure

The CsH₂PO₄ crystal undergoes two phase transitions, at T_{C1} =153 K and T_{C2} =503 K. At room temperature, the CsH₂PO₄ paraelectric phase has a monoclinic

structure with space group C_{2h}^{2} (P2₁/m), and the lattice constants are a=7.912 Å, b=6.383 Å, c=4.882 Å, β =107.73°, and Z=2 [26–28]. The crystal structure in the paraelectric phase is depicted in Fig. 1^{29} . Below $T_{C2}=503$ K, the paraelectric phase of CsH₂PO₄ possesses a monoclinic structure with two crystallographically different hydrogen bonds between PO₄ units, forming a one-dimensional hydrogen bond network³⁰⁻³². The hydrogen bonds along the b-axis, H(2), form a zigzag chain consisting of short hydrogen bonds (2.48 Å), and those along the c-axis, H(1), form a linear chain consisting of slightly longer hydrogen bonds (2.54 Å). Cs atoms and PO₄ groups are centered on mirror planes perpendicular to the *b*-axis. Above 503 K, the cubic structure has a lattice constant of a=4.9615 Å, and the space group is Pm3m. Below T_{C1} , the crystal structure of ferroelectric CsH₂PO₄ is monoclinic with space group C_2^2 (P2₁), and the lattice constants are a=7.904 Å, b=6.316 Å, c=4.895 Å, $\beta=108.23^{\circ}$, and Z $=2^{33}$.

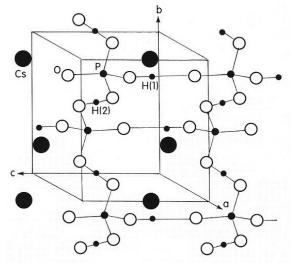
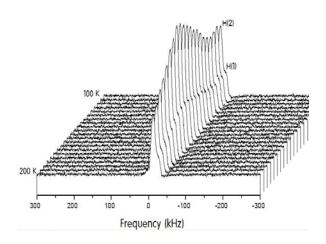


Figure 1. Crystal structure of CsH_2PO_4 in paraelectric phase.

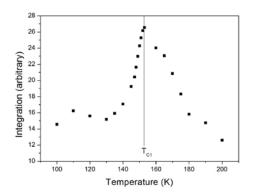
Experimental Method

 CsH_2PO_4 single crystals were grown by slow evaporation from an aqueous solution at room temperature, following the reaction: $Cs_2CO_3 + 2H_3PO_4 \rightarrow 2CsH_2PO_4 + CO_2\uparrow + H_2O^{34}$. The crystals were parallelepipedic and colorless. The crystallographic *c*-axis was determined from the crystal morphology.

The NMR signals and the spin-lattice relaxation time in the laboratory frame, T_1 , for ¹H nuclei in CsH₂PO₄ single crystals were measured using the Varian 200 MHz NMR and 500 MHz NMR spectrometers at the Korea Basic Science Institute Seoul Western Center. The static magnetic fields were 4.7 T and 11.75 T, respectively, and the central radio frequencies were set to $\omega_o/2\pi$ =200 MHz and $\omega_o/2\pi$ =500 MHz for the ¹H nucleus. The spectrum and relaxation times were obtained with the magnetic field applied parallel to the *c*-axis of the crystal. We measured the ${}^{1}H T_{1}$ using a saturation recovery pulse sequence $sat-t-\pi/2$. The nuclear magnetizations of the ¹H nuclei at a time t after the sat pulse (a comb of one hundred $\pi/2$ pulses applied at a regular interval of 2 µs) and the delay time of 420 µs were determined following the excitation $\pi/2$ pulse. Also, sixteen scans were employed for the acquisition of spectra. The widths of the $\pi/2$ pulses were 3 µs for ¹H at 200 MHz and 1 µs for ¹H at 500 MHz. Further, the NMR signals and spin-lattice relaxation times in the laboratory frame, T_1 , for ¹³³Cs nuclei in CsH₂PO₄ single crystals were measured using the Varian 200 MHz NMR, Bruker 400 MHz NMR, and Varian 500 MHz NMR spectrometers at the Korea Basic Science Institute Seoul Western Center. The central radio frequencies were set to $\omega_0/2\pi$ =26.23 MHz, 52.48 MHz, and 65.57 MHz, respectively, for the ¹³³Cs nucleus. The ¹³³Cs T_1 measurements were performed using sat-t- $\pi/2$ pulse sequences. The nuclear magnetization M(t) of the ¹³³Cs nuclei at a time t after the sat pulses was determined from the saturation recovery sequence following each pulse. The width of the $\pi/2$ pulse was 4 μ s for ¹³³Cs.


The ¹H MAS NMR experiments were performed at a Larmor frequency of 400 MHz. The samples were placed in the 4 mm MAS probe as powders, and the MAS rate was set to 10 kHz for ¹H MAS to minimize the spinning sideband overlap. The spin–lattice relaxation times in the rotating frame, T_{1p} , for ¹H were measured by applying a spin-locking pulse. The π pulse time for ¹H was 5 µs according to the spin-locking field. The NMR measurements were obtained in the temperature range of 100–425 K. The sample temperatures were maintained at constant

values by controlling the helium gas flow and heater current, yielding an accuracy of ± 0.5 K.


Results and Discussion

The NMR spectrum of ${}^{1}H$ (I=1/2) in CsH₂PO₄ crystals was obtained at frequencies of 200 MHz above 200 K and 500 MHz below 200 K. Here, the experiments were performed upon cooling below 300 K and upon heating above 300 K. The H resonance lines of the CsH₂PO₄ crystal were obtained with the magnetic field applied along the crystallographic c-axis. The NMR spectrum of ¹H in the CsH₂PO₄ crystal as a function of temperature below 200 K is shown in two dimensions in Fig. 2. The resonance line of the lower resonance frequency can be attributed to the H(1) hydrogen site of the longer hydrogen bond, and that of the higher resonance frequency can be attributed to the H(2) hydrogen site of the shorter hydrogen bond. This assignment of ¹H NMR lines was supported by the result of the spin-lattice relaxation time T_{10} in the rotating frame.

The two ¹H resonance lines for H(1) and H(2) overlap, and the intensity of the lines for H(2) is stronger than that of those for H(1). Fig. 3 shows the integration of the two ¹H NMR signals shown in Fig. 2; the integrated signals were measured at $\omega_o/2\pi$ =500 MHz.

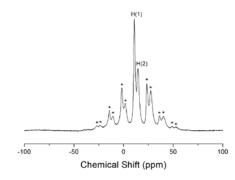


Figure 2. ¹H NMR spectrum of CsH₂PO₄ single crystal as a function of temperature ($\omega_0/2\pi$ =500 MHz).

Figure 3. Integrated ¹H NMR spectrum of CsH₂PO₄ single crystal as a function of temperature

The integration increases with increasing temperature below T_{C1} , and near T_{C1} the integration is strong. Above T_{C1} , the integration decreases abruptly with increasing temperature. Prompted by the published result that dynamic ordering of hydrogen occurs in one of the hydrogen bonds as the material enters the ferroelectric phase, we propose that the change in the proton-signal intensity with temperature is related to the ordering of these protons³⁵.

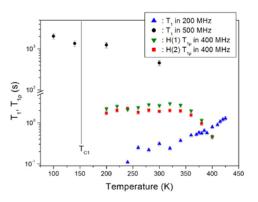


Figure 4. ¹H MAS NMR spectrum of CsH₂PO₄ at room temperature ($\omega_o/2\pi$ =400 MHz).

MAS NMR was used for detailed analysis of the structure of the two protons in CsH₂PO₄. Fig. 4 shows the ¹H MAS NMR spectrum of CsH₂PO₄ at room temperature. The NMR spectrum consists of two peaks, at chemical shifts of δ =10.95 ppm and δ =14.58 ppm. The spinning sidebands are marked with asterisks. The line component with the smaller chemical shift can be attributed to the H(1) hydrogen

site of the longer hydrogen bond, and that with the greater chemical shift can be attributed to the H(2) hydrogen site of the shorter hydrogen bond.

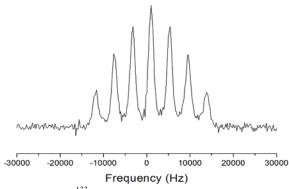
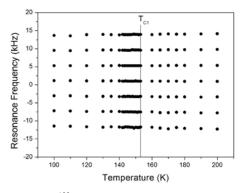
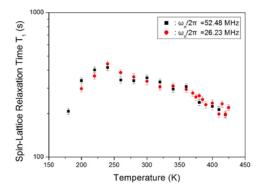

The nuclear magnetization recovery curves of the ¹H nuclei were obtained by measuring the nuclear magnetization at several temperatures. The temperature dependence of the spin-lattice relaxation time in the laboratory frame, T_1 , by static NMR and in the rotating frame, $T_{1\rho}$, by MAS NMR for ¹H in CsH_2PO_4 was obtained, as shown in Fig. 5. The ¹H relaxation times of the CsH₂PO₄ crystal at the two Larmor frequencies of 200 and 500 MHz show strong frequency dependence compared to the two T₁ data at 300 K at both frequencies. The spin-lattice relaxation time T₁ for the H nuclei measured at 500 MHz decreases with increasing temperature, and the T₁ values are very long. T_1 is continuous near T_{C1} .

Figure 5. Temperature dependence of spin-lattice relaxation time in the laboratory frame, T_1 , and in the rotating , T_{1p} , for ¹H in CsH₂PO₄.


Further, the spin-lattice relaxation time T_1 for the H nuclei measured 200 MHz in the paraelectric phase increases with increasing temperature, and the T_1 values are short. Here, the opposite trends for T_1 with increasing temperature are measured. This means that the molecular motions produced by T_1 can be vary according to the strength of the magnetic field. The NMR results for the T_1 values may depend strongly on the magnetic field. The 200 MHz and 400 MHz NMR spectroscopy measurements did not have adequate temperature control at low temperature, whereas those at 500 MHz did. The relaxation time obtained by 500 MHz NMR spectroscopy could not be measured at several temperatures because of the long proton relaxation time. In addition, the T_{10}

values in the paraelectric phase were obtained at $\omega_o/2\pi = 400$ MHz, as shown in Fig. 5. Here, the $T_{1\rho}$ values for H(1) are longer than those for H(2). This result is consistent with the length of the hydrogen bond. Smaller values of T_1 and $T_{1\rho}$ indicate an easier transfer of energy from the nuclear spin system to the surroundings. From the crystal structure, the H(2) protons, which form short hydrogen bonds, are expected to display shorter relaxation times than the H(1), which form slightly longer hydrogen bonds. Therefore, the H(1) and H(2) spectra are assigned using the T_1 and $T_{1\rho}$ values obtained here. Near 400 K, the $T_{1\rho}$ values decrease abruptly with increasing temperature.


Figure 6(a). ¹³³Cs NMR spectrum of CsH₂PO₄ single crystal at 145 K ($\omega_0/2\pi$ =65.57 MHz).

The resonance lines of 133 Cs (I=7/2) in CsH₂PO₄ crystals were observed at frequencies of 26.23 MHz, 52.48 MHz, and 65.57 MHz when the magnetic field was applied along the *c*-axis of the crystal. The 133 Cs NMR spectrum at a frequency of 65.57 MHz at 145 K is shown in Fig. 6(a). The satellite transitions are well resolved from the central line, and the signal

Figure 6(b). ¹³³Cs NMR spectrum of CsH₂PO₄ single crystal as a function of temperature ($\omega_0/2\pi$ =65.57 MHz).

intensity of the central line is stronger than those of the other lines. The splitting of the ¹³³Cs resonance lines was not change over a wide temperature range, as shown in Fig. 6(b). The zero point of the *y*- axis shows the resonance frequency, 65.57 MHz, of the ¹³³Cs nucleus. The central transition is virtually unshifted by the quadrupole interaction, and the relationships between the lines vary slightly with temperature. Further, the splitting between the resonance lines near T_{C1} is continuous, showing no anomaly. This result is consistent with that of Kanda and Fujimura²⁴. Because of the low quadrupole coupling constants of the ¹³³Cs nuclei, the central transition is not shifted by the quadrupole interaction.

Figure 7. Temperature dependence of spin-lattice relaxation time in the laboratory frame, T_1 , for ¹³³Cs in CsH₂PO₄ single crystal.

The spin-lattice relaxation times of ¹³³Cs in a CsH₂PO₄ single crystal were measured at two frequencies, 26.23 MHz and 52.48 MHz. The recovery traces of the magnetizations for this crystal were measured at several different temperatures. We measured the variations with temperature of the relaxation times for the central resonance line for the ¹³³Cs nuclei at these two frequencies. The recovery traces for the central resonance line of ¹³³Cs in the CsH₂PO₄ crystal can be represented by a single exponential function. The saturation recovery traces vary with the delay time. The ¹³³Cs relaxation times were then determined directly from the slopes of the log $[M(\infty) - M(t)]/M(\infty)$ versus time (t) plots³⁵⁻³⁸. The temperature dependence of the ¹³³Cs spin-lattice relaxation time T_1 in the CsH₂PO₄ crystals is shown in Fig. 7. The ¹³³Cs relaxation times for a CsH₂PO₄ crystal at the two Larmor frequencies of 26.23 and 52.48 MHz are frequency independent. Above 240 K, the ¹³³Cs T₁ value decreases slowly with increasing temperature, and the T₁ of ¹³³Cs above 240 K undergoes slow motion. The spin–lattice relaxation time for ¹³³Cs is very long in this temperature range investigated here.

Conclusion

We studied the microscopic dynamics of CsH₂PO₄, with two distinct hydrogen bond lengths, by static NMR and MAS NMR. The distinct proton dynamics of the two crystallographically inequivalent hydrogen sites were discussed in terms of the ¹H NMR and ¹H MAS NMR spectra. The crystal structure of LiH₂PO₄ was recently examined using single-crystal neutron diffraction, which elucidated two types of hydrogen bonds with different bond lengths³⁴. The CsH₂PO₄ crystal structure has two different hydrogen bond lengths as well as the structure of LiH₂PO₄. Although the hydrogen bonds have crystallographically inequivalent sites, H(1) and H(2), distinct proton dynamics for the two sites were not found. Further, the change in the integrated proton signal near T_{C1} in CsH₂PO₄ is related to the ordering of protons.

The microscopic dynamics of ¹H and ¹³³Cs in CsH_2PO_4 in the ferroelectric and paraelectric phases were also studied by examining the spin–lattice relaxation times in the laboratory frame, T_1 , and in the rotating frame, $T_{1\rho}$. The ¹H $T_{1\rho}$ value decreases abruptly with increasing temperature, and the decrease can be ascribed to the onset of slow translational diffusion of protons^{39,40}. The ¹³³Cs spectrum is more or less continuous near T_{C1} . The ¹H relaxation times at three Larmor frequencies show a strong frequency dependence, whereas the ¹³³Cs relaxation times at two Larmor frequencies are frequency independent. Consequently, the phase transition near T_{C1} in CsH₂PO₄ is due to the ordering of protons, whereas it is not due to the Cs ions.

Acknowledgements

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2015021274).

References

- 1. H. S. Lee and M. E. Tuckerman, J. Phys. Chem. C 112, 9917 (2008)
- 2. J. Otomo, T. Ishigooka, T. Kitano, H. Takahashi, and H. Nagamoto, *Electrochimica Acta* 53, 8186 (2008)
- 3. J. Otomo, N. Minagawa, C. Wen, K. Eguchi, and H. Takahashi, *Solid State Ionics* 156, 356 (2003)
- 4. D. A. Boysen, S. M. Haile, H. Liu, and R. A. Secco, Chem. Mater. 15, 727 (2003)
- 5. W. Bronowska, J. Chem. Phys. 114, 611 (2001)
- 6. A. I. Baranov, V. P. Khiznichenko, V. A. Sandler, and L. A. Shuvalov, Ferroelectrics 81, 1147 (1988)
- A. I. Baranov, E. M. Kopnin, V. V. Grebenev, A. Sin, Yu. Dubitsky, and P. Caracino, *Phys. Stat. Solidi* A 206, 36 (2009)
- 8. S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boyser, and T. Uda, Faraday Discuss 134, 17 (2007)
- S. Hossein, W. R. W. Daud, M. Badiei, A. A. H. Kadhum, and A. B. Mohammad, *Bull. Mater. Sci.* 34, 759 (2011)
- 10. B. V. Merinov and U. Bismayer, Solid State Ionics 136, 223 (2000)
- 11. R. E. Lechner, Solid State Ionics 145, 167 (2001)
- 12. B. Merinov, Solid State Ionics 213, 72 (2012)
- 13. E. Ortiz, R. A. Vargas, and B.-E. Mellander, J. Chem. Phys. 110, 4847 (1999)
- 14. Y. K. Taninouchi, T. Uda, Y. Awakura, A. Ikeda, and S. M. Haile, J. Mater. Chem. 17, 3182 (2007)

35 Ferroelectric-Paraelectric Phase Transition of CsH₂PO₄

- A. I. Baranov, E. M. Kopnin, V. V. Grebenev, A. Zaopo, Yu. Dubitsky, and P. Caracino, *Solid State Ionics* 178, 657 (2007)
- 16. Y.-K. Taninouchi, T. Uda, and Y. Awakura, Solid State Ionics 178, 1648 (2008)
- 17. V. G. Ponomareva and E. S. Shutova, Russian J. Electrochem. 43, 513 (2007)
- 18. E. Kanda, A. Tamaki, and T. Fujimura, J. Phys. C 15, 3401 (1982)
- 19. R. Youngblood, B. C. Frazer, J. Eckert, and G. Shirane, Phys. Rev. B 22, 228 (1980)
- 20. M. Wada, A. Sawada, and Y. Ishibashi, J. Phys. Soc. Jpn. 47, 1571 (1979)
- 21. K. Yamada, T. Sagara, Y. Yamane, and H. O. Okuda, Solid State Ionics 175, 557 (2004)
- 22. Y. Iwata, N. Koyano, and I. Shibuya, J. Phys. Soc. Jpn. 49, 304 (1980)
- A. Ishikawa, H. Maekawa, T. Yamamura, Y. Kawakita, K. Shibata, and M. Kawai, *Solid State Ionics* 179, 2345 (2008)
- 24. E. Kanda and T. Fujimura, J. Phys. Soc. Jpn. 43, 1813 (1977)
- 25. R. Blinc, B. Lozar, B. Topic, and S. Zumer, J. Phys. C: Solid State Phys. 16, 5053 (1983)
- 26. H. Matsunaga, K. Itoh, and E. Nakamura, J. Phys. Soc. Jpn. 48, 2011 (1980)
- 27. C. E. Botez, J. D. Hermosillo, J. Zhang, J. Qian, Y. Zhao, J. Majzlan, R. R. Chianelli, and C. Pantea, J. Chem. Phys. 127, 194701 (2007)
- 28. J. Hatori, Y. Matsuo, and S. Ikehata, Solid State Ionics 178, 681 (2007)
- 29. Y. Shchur, Phys. Rev. B 74, 54301 (2006)
- 30. E. J. Sonneveld and J. W. Wisser, Acta Crystallogr. 35, 1975 (1979)
- 31. D. Semmingsen, W. D. Ellenson, B. S. Frazer, and G. Shirane, Phys. Rev. Lett. 38, 1299 (1971)
- 32. Y. Uesu and J. Kobayashi, Phys. Stat. Solidi A 34, 475 (1976)
- 33. L.N. Rashkovich, K.B. Meteva, Sov. Phys. Crystallogr. 23, 447 (1978)
- 34. I. H. Oh, K.-S. Lee, M. Meven, G. Heger, and C. E. Lee, J. Phys. Soc. Jpn. 79, 74606 (2010)
- 35. O. V. Rozanov, Yu. N.Moskvich, and A. A. Sukhovskii, Sov. Phys. Solid State 25, 212 (1983)
- 36. A. Abragam, "The Principles of Nuclear Magnetism" Chap. 3, Oxford University Press, Oxford, 1961.
- 37. I. G. Lee, K.-Y. Lee, J.-H. Kim, S. Chae, and H.-J. Lee, J. Kor. Mag. Reson. 17, 54 (2013)
- 38. Y. K. Paik and C. L. Chang, J. Kor. Mag. Reson. 17, 19 (2013)
- 39. R. K. Harris, "Nuclear Magnetic Resonance Spectroscopy" Chap. 5, Pitman Pub. INC, London, 1983.
- 40. A. Damyanovich, M. M. Pintar, and R. Blinc, J. Slak, Phys. Rev. B 56, 7942 (1997)