DOI QR코드

DOI QR Code

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong (National Institute of Animal Science, Rural Development Administration) ;
  • Chai, Han-Ha (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Seung-Hwan (National Institute of Animal Science, Rural Development Administration) ;
  • Cho, Yong-Min (National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Jung-Woo (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Nam-Kuk (Experiment Research Institute, National Agricultural Products Quality Management Service)
  • Received : 2014.10.17
  • Accepted : 2015.01.30
  • Published : 2015.08.01

Abstract

Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

Keywords

References

  1. Ahn, J., X. Li, Y. M. Choi, S. Shin, S.-A. Oh, Y. Suh, T. H. Nguyen, M. Baik, S. Hwang, and K. Lee. 2014. Differential expressions of G0/G1 Switch gene 2 and comparative gene identification-58 are associated with fat content in bovine muscle. Lipids 49:1-14. https://doi.org/10.1007/s11745-013-3866-3
  2. Chan, S. S. Y., L. J. Schedlich, S. M. Twigg, and R. C. Baxter. 2009. Inhibition of adipocyte differentiation by insulin-like growth factor-binding protein-3. Am. J. Physiol. Endocrinol. Metab. 296:E654-E663. https://doi.org/10.1152/ajpendo.90846.2008
  3. Cho, E. S., S. G. Kwon, J. H. Kim, D. H. Park, T. W. Kim, J. Nam, I. S. Jang, J.-S. Choi, W. Y. Bang, and C. W. Kim. 2011. Study for the expression of Adiponectin, fatty acid binding protein (FABP) 4, stearoyl-CoA desaturase (SCD) genes and the methylation of SCD promoter in porcine muscle and fat tissues. African J. Agric. Res. 6:6425-6431.
  4. Cui, H. X., R. R. Liu, G. P. Zhao, M. Q. Zheng, J. L. Chen, and J. Wen. 2012. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genomics 13:213. https://doi.org/10.1186/1471-2164-13-213
  5. Daniels, T. F., X. L. Wu, Z. Pan, J. J. Michal, R. W. Wright Jr, K. M. Killinger, M. D. MacNeil, and Z. Jiang. 2010. The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle. PloS One 5(12):e15203. https://doi.org/10.1371/journal.pone.0015203
  6. Fernyhough, M., E. Okine, G. Hausman, J. L. Vierck, and M. V. Dodson. 2007. $PPAR\gamma$ and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest. Anim. Endocrinol. 33:367-378. https://doi.org/10.1016/j.domaniend.2007.05.001
  7. Fontanesi, L., R. Davoli, L. Nanni Costa, F. Beretti, E. Scotti, M. Tazzoli, F. Tassone, M. Colombo, L. Buttazzoni, and V. Russo. 2008. Investigation of candidate genes for glycolytic potential of porcine skeletal muscle: Association with meat quality and production traits in Italian Large White pigs. Meat Sci. 80:780-787. https://doi.org/10.1016/j.meatsci.2008.03.022
  8. He, K., Q. Wang, Z. Wang, and Y. Pan. 2013. Association study between gene polymorphisms in PPAR signaling pathway and porcine meat quality traits. Mamm. Genome 24:322-331. https://doi.org/10.1007/s00335-013-9460-4
  9. Hebbachi, A. M., B. L. Knight, D. Wiggins, D. D. Patel, and G. F. Gibbons. 2008. Peroxisome proliferator-activated receptor $\alpha$ deficiency abolishes the response of lipogenic gene expression to re-feeding. Restoration of the normal response by activation of liver X receptor $\alpha$. J. Biol. Chem. 283:4866-4876. https://doi.org/10.1074/jbc.M709471200
  10. Jiang, A.-A., M. Z. Li, H. F. Liu, L. Bai, J. Xiao, and X. W. Li. 2014. Higher expression of acyl-CoA dehydrogenase genes in adipose tissues of obese compared to lean pig breeds. Genet. Mol. Res. 13:1684-1689. https://doi.org/10.4238/2014.January.22.5
  11. Jurie, C., I. Cassar-Malek, M. Bonnet, C. Leroux, D. Bauchart, P. Boulesteix, D. W. Pethick, and J. F. Hocquette. 2007. Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85:2660-2669. https://doi.org/10.2527/jas.2006-837
  12. Kim, N. K., D. Lim, S. H. Lee, Y. M. Cho, E. W. Park, C. S. Lee, B. S. Shin, T. H. Kim, and D. Yoon. 2011. Heat shock protein B1 and its regulator genes are negatively correlated with intramuscular fat content in the Longissimus Thoracis muscle of Hanwoo (Korean cattle) steers. J. Agric. Food Chem. 59:5657-5664. https://doi.org/10.1021/jf200217j
  13. Kim, N. K., J. H. Lim, M. J. Song, O. H. Kim, B. Y. Park, M. J. Kim, I. H. Hwang, and C. S. Lee. 2008. Comparisons of longissimus muscle metabolic enzymes and muscle fiber types in Korean and western pig breeds. Meat Sci. 78:455-460. https://doi.org/10.1016/j.meatsci.2007.07.014
  14. Laffitte, B. A., S. B. Joseph, M. Chen, A. Castrillo, J. Repa, D. Wilpitz, D. Mangelsdorf, and P. Tontonoz. 2003. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol. Cell. Biol. 23:2182-2191. https://doi.org/10.1128/MCB.23.6.2182-2191.2003
  15. Langfelder, P. and S. Horvath. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559
  16. Li, B., H. N. Zerby, and K. Lee. 2007. Heart fatty acid binding protein is upregulated during porcine adipocyte development. J. Anim. Sci. 85:1651-1659. https://doi.org/10.2527/jas.2006-755
  17. McKay, R. M., J. P. McKay, L. Avery, and J. M. Graff. 2003. C. elegans: A model for exploring the genetics of fat storage. Dev. Cell 4:131-142. https://doi.org/10.1016/S1534-5807(02)00411-2
  18. Michal, J., Z. W. Zhang, C. T. Gaskins, and Z. Jiang. 2006. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu$\times$Limousin $F_2$ crosses. Anim. Genet. 37:400-402. https://doi.org/10.1111/j.1365-2052.2006.01464.x
  19. Nikitin, A., S. Egorov, N. Daraselia, and I. Mazo. 2003. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 19:2155-2157. https://doi.org/10.1093/bioinformatics/btg290
  20. Ovilo, C., A. Clop, J. L. Noguera, M. A. Oliver, C. Barragan, C. Rodriguez, L. Silio, M. A. Toro, A. Coll, J. M. Folch, A. Sanchez, D. Babot, L. Varona, and M. Perez-Enciso. 2002. Quantitative trait locus mapping for meat quality traits in an Iberian$\times$Landrace F2 pig population. J. Anim. Sci. 80:2801-2808. https://doi.org/10.2527/2002.80112801x
  21. Rahib, L., N. K. MacLennan, S. Horvath, L. C. Liao, and K. M. Dipple. 2007. Glycerol kinase deficiency alters expression of genes involved in lipid metabolism, carbohydrate metabolism, and insulin signaling. Eur. J. Hum. Genet. 15:646-657. https://doi.org/10.1038/sj.ejhg.5201801
  22. Rahib, L., G. Sriram, M. K. Harada, J. C. Liao, and K. M. Dipple. 2009. Transcriptomic and network component analysis of glycerol kinase in skeletal muscle using a mouse model of glycerol kinase deficiency. Mol. Genet. Metab. 96:106-112. https://doi.org/10.1016/j.ymgme.2008.11.163
  23. Repa, J. J., G. Liang, J. Ou, Y. Bashmakov, J.-M. A. Lobaccaro, I. Shimomura, B. Shan, M. S. Brown, J. L. Goldstein, and D. J. Mangelsdorf. 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, $LXR\alpha$ and $LXR\beta$. Genes Dev. 14:2819-2830. https://doi.org/10.1101/gad.844900
  24. Seo, J. B., H. M. Moon, W. S. Kim, Y. S. Lee, H. W. Jeong, E. J. Yoo, J. Ham, H. Kang, M.-G. Park, K. R. Steffensen, T. M. Stulnig, J. Gustafsson, S. D. Park, and J. B. Kim. 2004. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor $\gamma$ expression. Mol. Cell. Biol. 24:3430-3444. https://doi.org/10.1128/MCB.24.8.3430-3444.2004
  25. Seong, J., J. D. Oh, H. K. Lee, G. J. Jeon, and H. S. Kong. 2013. Identification and analysis of phospholipid transfer protein polymorphisms and their association with marbling score in Hanwoo (Korean cattle). Genet. Mol. Res. 12:731-737. https://doi.org/10.4238/2013.March.13.1
  26. Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498-2504. https://doi.org/10.1101/gr.1239303
  27. Ye, Y., S. Lin, H. Mu, X. Tang, Y. Ou, J. Chen, Y. Ma, and Y. Li. 2014. Analysis of differentially expressed genes and signaling pathways related to intramuscular fat deposition in skeletal muscle of sex-linked dwarf chickens. Biomed Res. Int. 2014, Article ID 724274.
  28. Yu, M., B. Geiger, N. Deeb, and M. F. Rothschild. 2006. Liver X receptor alpha and beta genes have the potential role on loin lean and fat content in pigs. J. Anim. Breed. Genet. 123:81-88. https://doi.org/10.1111/j.1439-0388.2006.00576.x
  29. Zhao, S., L. J. Ren, L. Chen, X. Zhang, M. L. Cheng, W. Z. Li, Y. Y. Zhang, and S. Z. Gao. 2009. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition. Lipids 44:1029-1037. https://doi.org/10.1007/s11745-009-3356-9

Cited by

  1. Evolutionary Analyses of Hanwoo (Korean Cattle)-Specific Single-Nucleotide Polymorphisms and Genes Using Whole-Genome Resequencing Data of a Hanwoo Population vol.39, pp.9, 2016, https://doi.org/10.14348/molcells.2016.0148
  2. Tissue expression analysis, cloning and characterization of the 5′-regulatory region of the bovine FABP3 gene vol.43, pp.9, 2016, https://doi.org/10.1007/s11033-016-4026-7
  3. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Intramuscular fat deposition in ruminants and pigs: A transcriptomics perspective1 vol.95, pp.5, 2017, https://doi.org/10.2527/jas.2016.1112
  4. Integrated analysis of lncRNA and mRNA expression in rainbow trout families showing variation in muscle growth and fillet quality traits vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-30655-8
  5. Effects of a pasture-based pork production system on the expression of genes involved in lipid metabolism and meat quality characteristics vol.10, pp.4, 2018, https://doi.org/10.5897/IJNAM2018.0232
  6. Genomic regions and enrichment analyses associated with carcass composition indicator traits in Nellore cattle vol.136, pp.2, 2018, https://doi.org/10.1111/jbg.12373
  7. Gene co-expression networks associated with carcass traits reveal new pathways for muscle and fat deposition in Nelore cattle vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-018-5345-y
  8. Effect of vitamin A restriction on carcass traits and blood metabolites in Korean native steers vol.59, pp.12, 2015, https://doi.org/10.1071/an17733
  9. Effects of PSMA1 on the differentiation and lipid deposition of bovine preadipocytes vol.48, pp.None, 2015, https://doi.org/10.1590/rbz4820180229
  10. Combined approaches to identify genomic regions involved in phenotypic differentiation between low divergent breeds: Application in Sardinian sheep populations vol.136, pp.6, 2015, https://doi.org/10.1111/jbg.12422
  11. Proteome alterations associated with the oleic acid and cis-9, trans-11 conjugated linoleic acid content in bovine skeletal muscle vol.222, pp.None, 2015, https://doi.org/10.1016/j.jprot.2020.103792