
Honam Mathematical J. 37 (2015), No. 2, pp. 187–205
http://dx.doi.org/10.5831/HMJ.2015.37.2.187

ON INTERVAL-VALUED FUZZY LATTICES

Jeong Gon Lee, Kul Hur and Pyung Ki Lim∗

Abstract. We discuss the relationship between interval-valued fuzzy
ideals and interval-valued fuzzy congruence on a distributive lat-
tice L and show that for a generalized Boolean algebra the lat-
tice of interval-valued fuzzy ideals is isomorphic to the lattice of
interval-valued fuzzy congruences. Finally we consider the products
of interval-valued fuzzy ideals and obtain a necessary and sufficient
condition for an interval-valued fuzzy ideal on the direct sum of
lattices to be representable as a direct sum of interval-valued fuzzy
ideals on each lattice.

1. Introduction

In 1975, Zadeh[12] introduced the concept of interval-valued fuzzy
sets as a generalization of fuzzy sets introduced by himself[11]. After
then, Biswas[1] applied the notion of interval-valued fuzzy sets to group
theory. Moreover, Gorzalczany[4] applied it to a method of inference
in approximate reasoning, and Mondal and Samanta[9] applied it to
topology. Recently, Hur et al.[6] introduced the concept of an interval-
valued fuzzy relations and obtained some of it’s properties. Also, Choi
et al.[3] applied it to topology in the sense of Šostak, Kang and Hur[7]
applied it to algebra.

In this paper, we discuss the relationship between interval-valued
fuzzy ideals and interval-valued fuzzy congruence on a distributive lattice
L and show that for a generalized Boolean algebra the lattice of interval-
valued fuzzy ideals is isomorphic to the lattice of interval-valued fuzzy
congruences. Finally we consider the products of interval-valued fuzzy
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ideals and obtain a necessary and sufficient condition for an interval-
valued fuzzy ideal on the direct sum of lattices to be representable as a
direct sum of interval-valued fuzzy ideals on each lattice.

2. Preliminaries

We will some concepts and two results needed in the later sections.
Throughout this paper, L = (L,+, ·) denotes a lattice andD(I)L denotes
the set of all interval-valued fuzzy sets in L (i.e., of all mappings from
L into (I,∨,∧), where I denotes the unit interval [0, 1] and x ∨ y =
max(x, y), x ∧ y = min(x, y)).

Let D(I) be the set of all closed subintervals of the unit interval
I = [0, 1]. The elements of D(I) are generally denoted by capital let-
ters M,N, · · · , and note that M = [ML,MU ], where ML and MU are
the lower and the upper end points respectively. Especially, we denoted,
0 = [0, 0], 1 = [1, 1], and a = [a, a] for every a ∈ (0, 1). We also note that

(i) (∀M,N ∈ D(I))(M = N ⇔ ML = NL,MU = NU ),

(ii ) (∀M,N ∈ D(I))(M ≤ N ⇔ ML ≤ NL,MU ≤ NU ).

For every M ∈ D(I), the complement of M , denoted by M c, is defined
by M c = 1−M = [1−MU , 1−ML] (See [9]).

Definition 2.1[4,12]. A mapping A : X → D(I) is called an interval-
valued fuzzy set (in short, IVFS ) in X, denoted by A = [AL, AU ], if
AL, AU ∈ IX such that AL ≤ AU , i.e., AL(x) ≤ AU (x) for each x ∈ X,
where AL(x) [resp. AU (x)] is called the lower [resp. upper ] end point
of x to A. For any [a, b] ∈ D(I), the interval-valued fuzzy set A in X
defined by A(x) = [AL(x), AU (x)] = [a, b] for each x ∈ X is denoted

by ˜[a, b] and if a = b, then the IVFS ˜[a, b] is denoted by simply ã. In
particular, 0̃ and 1̃ denote the interval-valued fuzzy empty set and the
interval-valued fuzzy whole set inX, respectively.

We will denote the set of IVFSs in X as D(I)X . It is clear that set
A = [AL, AU ] ∈ D(I)X for each A ∈ IX .

Definition 2.2[9]. An IVFS A is called an interval-valued fuzzy point(in
short, IVFP ) in X with the support x ∈ X and the value [a, b] ∈ D(I)
with b > 0, denoted by A = x[a,b], if for each y ∈ X,



On Interval-valued Fuzzy Lattices 189

A(y) =

{
[a, b], if y = x,
0, otherwise.

In particular, if b = a, then x[a,b] is denoted by xa .

We will denote the set of all IVFPs in X as IVFP (X).

Definition 2.3[9]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂ D(I)X . Then:
(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .
(ii) A = B iff A ⊂ B and B ⊂ A.
(iii) Ac = [1−AU , 1−AL].
(iv) A ∪B = [AL ∨BL, AU ∨BU ].
(iv)′

⋃
α∈ΓAα = [

∨
α∈ΓA

L
α,

∨
α∈ΓA

U
α ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].
(v)′

⋂
α∈ΓAα = [

∧
α∈ΓA

L
α,

∧
α∈ΓA

U
α ].

Result 2.A[9, Theorem 1]. Let A,B,C ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then:

(a) 0̃ ⊂ A ⊂ 1̃.
(b) A ∪B = B ∪A, A ∩B = B ∩A.
(c) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C.
(d) A,B ⊂ A ∪B, A ∩B ⊂ A,B.
(e) A ∩ (

⋃
α∈ΓAα) =

⋃
α∈Γ(A ∩Aα).

(f) A ∪ (
⋂

α∈Γ aα) =
⋂

α∈Γ(A ∪Aα).

(g) (0̃)c = 1̃, (1̃)c = 0̃.
(h) (Ac)c = A.
(i) (

⋃
α∈ΓAα)

c =
⋂

α∈ΓA
c
α, (

⋂
α∈ΓAα)

c =
⋃

α∈ΓA
c
α.

Definition 2.4[7]. An interval-valued fuzzy set A in G is called an
interal-valued fuzzy subgroupoid(in short, IVGP ) in G if

AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y), ∀x, y ∈ G.

It is clear that 0̃, 1̃ ∈ IVGP(G). We will denote the IVGPs in G as
IVGP(G).

Definition 2.5[10]. Let A ∈ IL. Then A is called a fuzzy sublattice of
L if it satisfies the following conditions: For all x, y ∈ L,

(i) A(x+ y) ≥ A(x) ∧A(y).
(ii) A(x · y) ≥ A(x) ∧A(y).
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Definition 2.6[10]. Let A be a fuzzy sublattice of L. Then A is called
a fuzzy ideal [resp. filter ] of L if x ≤ y in L implies A(x) ≥ A(y) [resp.
A(x) ≤ A(y)].

Definition 2.7[10]. Let A be a fuzzy ideal [resp. filter] of L. Then A
is called a fuzzy prime ideal [resp. filter ] of L if A(x · y) ≤ A(x) ∨A(y)
[resp. A(x+ y) ≤ A(x) ∨A(y)] for all x, y ∈ L.

3. Interval-valued fuzzy sublattices, ideals and filters

We discuss here some basic results. In the process, some well-known
basic concepts of lattice theory are extended to the inverval-valued fuzzy
setting. After systematically introducing the notions of interval-valued
fuzzy ideal [resp. filter, prime ideal and prime filter], we provide their
characterizations.

In this section, A ∈ D(I)L is said to be monotonic [resp. antimono-
tonic ] if AL(x) ≤ AL(y) and AU (x) ≤ AU (y) [resp. AL(x) ≥ AL(y) and
AU (x) ≥ AU (y)] whenever x ≤ y in L.

Theorem 3.1. Let A ∈ D(I)L. Then the following are equivalent : For
any x, y ∈ L,

(a) A is antimonotonic.
(b) AL(x · y) ≥ AL(x) ∨AL(y) and AU (x · y) ≥ AU (x) ∨AU (y).
(c) AL(x+ y) ≤ AL(x) ∧AL(y) and AU (x+ y) ≤ AU (x) ∧AU (y).

Proof. (a) ⇒ (b) : Suppose the condition (a) holds.
Let x, y ∈ L. Then clearly x · y ≤ x and x · y ≤ y. Thus, by the

condition (a),

AL(x · y) ≥ AL(x), AL(x · y) ≥ AL(y)

and
AU (x · y) ≥ AU (x), AU (x · y) ≥ AU (y).

So AL(x · y) ≥ AL(x) ∨AL(y) and AU (x · y) ≥ AU (x) ∨AU (y).

(b) ⇒ (a) : Suppose the condition (b) holds. Let x, y ∈ L such that
x ≤ y in L. Then clearly x · y = x. Thus, by the condition (b),

AL(x · y) = AL(x) ≥ AL(x) ∨AL(y)

and
AU (x · y) = AU (x) = AU (x) ∨AU (y).
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So AL(x) ≥ AL(y) and AU (x) ≥ AU (y).

(a) ⇒ (c) : Suppose the condition (a) holds. Let x, y ∈ L. Then
clearly x ≤ x+ y and y ≤ x+ y. Thus, by the condition (a),

AL(x) ≥ AL(x+ y), AL(y) ≥ AL(x+ y)

and
AU (x) ≥ AU (x+ y), AU (y) ≥ aU (x+ y).

So AL(x+ y) ≤ AL(x) ∧AL(y) and AU (x+ y) ≤ AU (x) ∧AU (y).

(c) ⇒ (a): Suppose the condition (c) holds. Let x, y ∈ L such that
x ≤ y. Then clearly x+ y = y. Thus, by the condition (c),

AL(y) = AL(x+ y) ≤ AL(x) ∧AL(y)

and
AU (y) = AU (x+ y) ≤ AU (x) ∧AU (y).

So AL(y) ≤ AL(x) and AU (y) ≤ AU (x). Hence A is antimonotonic.
This completes the proof.

Definition 3.2. Let A ∈ D(I)L. Then A is called an interval-valued
fuzzy sublattice (in short, IVFL) of L if it satisfies the following condi-
tions: For any x, y ∈ L,

(i) AL(x+ y) ≥ AL(x) ∧AL(y), AU (x+ y) ≥ AU (x) ∧AU (y).
(ii) AL(x · y) ≥ AL(x) ∧AL(y), AU (x · y) ≥ AU (x) ∧AU (y).

We will denote the set of all IVFLs of L as IVFL(L). From Defini-
tions 2.5 and 3.2, it is clear that if A ∈ IVFL(L), then AL and AU are
fuzzy sublattices of L.

Definition 3.3. Let A ∈ IVFL(L). Then A is called an interval-valued
fuzzy ideal (in short, IVFI ) of L if it satisfies any one of the conditions
of Theorem 3.1.

We will denote the set of all IVFIs of I as IVFI(L). From Definitions
2.6 and 3.3, it is obvious that if A ∈ IVFI(L), then AL and AU are fuzzy
ideals of L.

The following is the dual of Theorem 3.1.
Theorem 3.4[The dual of Theorem 3.1]. Let A ∈ D(I)L. Then the
following are equivalent : For any x, y ∈ L,

(a) A is monotonic.
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(b) AL(x+ y) ≥ AL(x) ∨AL(y) and AU (x+ y) ≥ AU (x) ∨AU (y).
(c) AL(x · y) ≤ AL(x) ∧AL(y) and AU (x · y) ≤ AU (x) ∧AU (y).

Definition 3.5. Let A ∈ IVFL(L). Then A is called an interval-valued
fuzzy filter (in short, IVFF ) of L if it is satisfies any one of the condi-
tions of Theorem 3.7.

We will denote the set of all IVFFs of L on IVFF(L). From Defini-
tions 2.6 and 3.5, it is clear that if A ∈ IVFF(L), then AL and AU are
fuzzy filters of L.

Theorem 3.6. Let A ∈ D(I)L. Then A is an IVFF [resp. IVFI] if and
only if

AL(xy) = AL(x) ∧AL(y) and AU (xy) = AU (x) ∧AU (y)

[resp. AL(x+y) = AL(x)∧AL(y) and AU (x+y) = AU (x)∧AU (y)]

for all x, y ∈ L, i.e., AL and AU are homomorphisms from (L, ·) [resp.
(L,+)] into (I,∧).

Proof. (⇒): Suppose A is an IVFF of L. Let x, y ∈ L such that
x ≤ y. Then

AL(xy) ≥ AL(x) ∧AL(y) [SinceA is an IVFS]

= AL(x) [Sincex ≤ y inL andA is an IVFF]

≥ AL(xy). [Sincex ≥ xy inL andA is an IVFF]

Thus AL(xy) = AL(x) ∧ AL(y). Similarly, we have that AU (xy) =
AU (x) ∧AU (y).

Suppose A is an IVFI. Then, by the similar arguments, we have that

AL(x+ y) = AL(x) ∧AL(y) and AU (x+ y) = AU (x) ∧AU (y)

for all x, y ∈ L.
(⇐): Suppose AL(xy) = AL(x)∧AL(y) and AU (xy) = AU (x)∧AU (y)

for all x, y ∈ L. Let x, y ∈ L such that x ≤ y. Then

AL(x) = AL(xy) [Sincex = x · y]
= AL(x) ∧AL(y). [By the hypothesis]

Thus AL(x) ≤ AL(y).
Similarly, we have that AU (x) ≤ AU (y) for any x, y ∈ L with x ≤ y.

So A is an IVFF of L.
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Now suppose AL(x+ y) = AL(x) ∧AL(y) and AU (x+ y) ≤ AU (x) ∧
AU (y) for all x, y ∈ L. Then, by the similar arguments, we can see that
A is an IVFI of L. This completes the proof.

Definition 3.7. Let A ∈ IVFI(L) [resp. IVFF(L)]. Then A is called an
interval-valued fuzzy prime ideal (in short, IVFPI ) [resp. filter (in short,
IVFPF )] of L it satisfies the following conditions : For any x, y ∈ L,

AL(x · y) ≤ AL(xy) ∨AL(y) and AU (x · y) ≤ AU (x) ∨AU (y)

[resp. AL(x+y) ≤ AL(x)∨AL(y) and AU (x+y) ≤ AU (x)∨AU (y)].

We will denote the set of all IVFPIs [resp. IVFPFs] ad IVFPI(L)
[resp. IVFPF(L)]. From Definitions 2.6 and 3.7, it is clear that A ∈
IVFPI(L) [resp. IVFPF(L)], then AL and AU are fuzzy prime ideals
[resp. filters] of L.

The following is the immediate results of Theorem 3.1 and Definition
3.7.
Theorem 3.8. Let A ∈ IVFI(L). Then the following are equivalent:
For any x, y ∈ L,

(a) A ∈ IVFPI(L).
(b) AL(x · y) = AL(x) ∨AL(y) and AU (x · y) = AU (x) ∨AU (y).
(c) A(x · y) = A(x) or A(y).

The following is the immediate result of Theorem 3.4 and Definition
3.7.
Theorem 3.9. Let A ∈ IVFF(L). Then the following are equivalent:
For any x, y ∈ L,

(a) A ∈ IVFPF(L).
(b) AL(x+ y) = AL(x) ∨AL(y) and AU (x+ y) = AU (x) ∨AU (y).
(c) A(x+ y) = A(x) or A(y).

The following is the immediate result of Theorems 3.6, 3.8 and 3.9.
Corollary 3.10. LetA ∈ D(I)L. ThenA ∈ IVFPI(L) [resp. IVFPF(L)]
if and only if AL and AU are homomorphisms from (L,+, ·) into (I,∧,∨)
[resp. (I,∨,∧)].

The following is the immediate result of Definitions 2.3 (iii), 3.3 and
3.5.
Theorem 3.11. Let A ∈ IVFPI(L) if and only if Ac ∈ IVFPF(L).
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4. Level sublattice ideals and filters

In this section, we introduce the concept of level subsets and estab-
lishes the fact that it is going to play an important role in the theory of
interval-valued fuzzy lattices, as is the case in the theories of interval-
valued fuzzy groups and interval-valued fuzzy rings.

Definition 4.1. Let A be an IVFS in a set X and let [r, s] ∈ D(I).
Then the set

A[r,s] = {x ∈ X : AL(x) ≥ r and AU (x) ≥ s}
is called a level subset of A.

Result 4.A[8, Proposition 2.4]. Let A be an IVFS in a set X and
let [r1, s1], [r2, s2] ∈ D(I). Then [r1, s1] ≤ [r2, s2] in D(I) if and only if
A[r2,s2] ⊂ A[r1,s1].

Theorem 4.2. Let A ∈ D(I)L. Then A ∈ IVFL(L) if and only if A[r,s]

is a sublattice of L for each [r, s] ∈ ImA.

Equivalently, A ∈ IVFL(L) if and only if each nonempty level subset
A[r,s] is a sublattice of L. In this case, A[r,s] is called a level sublattice of
L.

Proof. We prove here the second assertion of the theorem. The proof
of the first is the same, except for trivial modification.

(⇒): Suppose A ∈ IVFL(L). For each [r, s] ∈ D(I), let A[r,s]

be nonempty level subset of L and let x, y ∈ A[r,s]. Then AL(x) ≥
r,AL(y) ≥ r and AU (x) ≥ s,AU (y) ≥ s, Since A ∈ IVFL(L).

AL(x+y) ≥ AL(x)∧AL(x)∧AL(y) ≥ r, AU (x+y) ≥ AU (x)∧AU (y) ≥ s

and

AL(x · y) ≥ AL(x) ∧AL(y) ≥ r, AU (x · y) ≥ AU (x) ∧AU (y) ≥ s.

Thus x+ y ∈ A[r,s] and x · y ∈ A[r,s]. So A[r,s] is a sublattice of L.

(⇐): Suppose the necessary condition holds. For any x, y ∈ L, let
A(x) = [r1, s1] and let A(y) = [r2, s2]. Without loss of generality, we
can assume that [r1, s1] ≤ [r2, s2].

Then, by Result 4.A,

A[r2,s2] ⊂ A[r1,s1].
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Since A(x) = [r1, s1] and A(y) = [r2, s2], x ∈ A[r1,s1] and y ∈ A[r2,s2].
Thus x, y ∈ A[r1,s1]. Since A[r1,s1] is a sublattice of L,

x+ y ∈ A[r1,s1] and x · y ∈ A[r1,s1].

So

AL(x+ y) ≥ r1, AU (x+ y) ≥ s1

and

AL(x · y) ≥ r1, AU (x · y) ≥ s1.

Hence

AL(x+ y) ≥ r1 = AL(x) ∧AL(y), AU (x+ y) ≥ s1 = AU (x) ∧AU (y)

and

AL(x · y) ≥ r1 = AL(x) ∧AL(y), AU (x · y) ≥ s1 = AU (x) ∧AU (y).

Therefore A ∈ IVFL(L). This completes the proof.

It is easy to show that the set of level sublattices of an IVFS of a
lattice forms a chain. However, in contrast to the chain level subgroups
of an interval-valued subgroup, the chain of level sublattices of an IVFS
may not contain a least element.

In interval-valued fuzzy group theory, it is well known that an interval-
valued fuzzy subgroup of a group attains its supremum at the identity
of the given group. However, the situation is different in the case of an
IVFS of a lattice, since an IVFS may neither attain its supremum nor
its infimum at any element of the given lattice. The following examples
make the situation clear.

The following examples are the modifications of Examples 3.12, 3.13
and 3.14 in [1].
Example 4.3. Let L = N, the chain of natural numbers. We define a
mapping A : L → D(I) as follows: For each x ∈ L,

A(x) = [1− 1

n+ 1
, 1− 1

n+ 1
], for all x ∈ (2n)

(2n+1)

for each fixed nonnegative integer n, where (2n) denotes the set of all
those positive integers which are multiple of 2n. Then clearly A ∈ D(I)L.
Furthermore, by Theorem 4.2, A ∈ IVFL(L) with the following chain of
level sublattices:

· · · ⊂ (23) ⊂ (22) ⊂ (2) ⊂ L,
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where ”1” is the least element of L and A(0) = [0, 0]. But
∨

x∈LA(x) =
[1, 1] and it is not attained any where by A. ¤

Example 4.4. Let L = N × N, the Cartesian product of the chain of
natural numbers with it self. Define subsets Li of L as follows:

L1 = {(2, 2), (2, 3), (3, 2), (3, 3)}
Ln = {x ∈ L : x ≤ (n+ 1, n+ 1)}

for each positive integer n ≥ 2. Now define a mapping A : L → D(I) as
follows : For each x ∈ L,

A(x) =

{
[1, 1] if x ∈ L1,

[ 1n ,
1
n ] if x ∈ Ln

Ln−1
,

where n ∈ N and n ≥ 2.
Then clearly A ∈ IVFL(L) by Theorem 4.2. Furthermore,

∨
x∈LA(x) =

[1, 1] which is not attained at the least element (1, 1) of L by A and
infimum is not attained anywhere. ¤

Example 4.5. Let N be the set of natural numbers and let

L = {∅,N} ∪ {{n} : n ∈ N}.
Then clearly L is a lattice under the ordering of set inclusion with ∅
as its least element and N the greatest element. Consider all the finite
sublattices of L of the form:

L1 = {∅,N},
Ln = {∅,N} ∪ {{i} : i ≤ n− 1},

for each n ∈ N and n ≥ 2.
We define two mappings A,B : L → D(I) as follows: For each x ∈ L,

A(x) =

{
[1, 1] if x ∈ L1,

[ 1n ,
1
n ] if x ∈ Ln

Ln−1
,

B(x) =

{
[0, 0] if x ∈ L1,

[1− 1
n , 1− 1

n ] if x ∈ Ln
Ln−1

,

Then we can easily see that A,B ∈ IVFL(L). Moreover, it is easy to
show that A does not attain its infimum, whereas B does not attain its
supremum. ¤

The following result is straightforward.
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Theorem 4.6. Let A ∈ IVFL(L). Then A ∈ IVFI(L) [resp. IVFF(L)]
if and only if A[r,s] is an ideal [resp. a filter] of L, for each [r, s] ∈ ImA.

In this case, A[r,s] is called a level ideal [resp. filter ] of L.

Theorem 4.7. Let A ∈ IVFI(L) [resp. IVFF(L) ]. Then A ∈ IVFPI(L)
[resp. IVFPF(L)] if and only if A[r,s] is prime, for each [r, s] ∈ ImA.

Proof. (⇒): Suppose A ∈ IVFPI(L). For each [r, s] ∈ ImA and for
any a, b ∈ L, let a·b ∈ A[r,s]. Then clearly AL(a·b) ≥ r and AU (a·b) ≥ s.
By Theorem 3.8,

A(a · b) = A(a) or A(a · b) = A(b).

Thus

AL(a) ≥ r, AU (a) ≥ s

or

AL(b) ≥ r, AU (b) ≥ s.

So a ∈ A[r,s] or b ∈ A[r,s]. Hence A[r,s] is prime.

(⇐): Suppose each level ideal A[r,s] is prime. Assume that A6∈
IVFPI(L). Then, by Theorem 3.8, there exists a, b ∈ L such that

A(a · b) 6= A(a) and A(a · b) 6= A(b).

Since A ∈ IVFI(L),

AL(a · b) > AL(a), AU (a · b) > AU (a)

and

AL(a · b) > AL(b), AU (a · b) > AU (b)

Let A(a · b) = [r, s]. Then clearly a · b ∈ A[r,s]. But a 6∈A[r,s] and b6∈A[r,s].
This contradicts the fact that A[r,s] is a prime ideal of L. So A ∈
IVFPI(L).

By the similar arguments, we can see that A ∈ IVFPF(L) if and only
if each level filter A[r,s] is prime. This completes the proof.

Proposition 4.8. Let {Aα}α∈Γ be any family of IVFLs or IVFIs [resp.
IVFFs] of L. Then

⋂
α∈ΓAα ∈ IVFL(L) or IVFI(L) [resp. IVFF(L)].

Proof. We omit.

Definition 4.9. Let A ∈ D(I)L. Then, the least IVFL or IVFI [resp.
IVFF] of L containing A is called the interval-valued fuzzy sublattice or
interval-valued fuzzy ideal [resp. filter] generated by A.
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From Proposition 4.8, it is obvious that A is a nonzero interval-valued
fuzzy set in a lattice, then a least interval-valued fuzzy sublattice con-
taining A exists. In the future, we will denote an IVFS generated by a
nonzero interval-valued fuzzy set A as [A], and the same notation [A[r,s]]
is used for a sublattice generated by a non-interval-valued fuzzy subset
A[r,s]. However the same will be clear from the context. Similar are the
cases of interval-valued fuzzy ideal [resp. filter] which is denoted by (A]
[resp. [A)].

We recall from lattice theory that the sublattice generated by any
subset H of a lattice L consists of the lattice polynomial functions of
the elements of H. That is, if [H] is a sublattice generated by a subset
H of L, then [H] = {a : a = P (h0, h1, · · · , hn−1), n ≥ 1, hi ∈ H}, for
some n-ary polynomial P (See [5]).

In the following result, we construct an IVFL generated by an IVFS
in a specified way.

Proposition 4.10. Let A ∈ D(I)L. We define a mapping A∗ : L →
D(I) as follows : For each x ∈ L,

A∗(x) = [r, s], ifx ∈ [A[r,s]] andx6∈[A[t,w]],

where [t, w] > [r, s] for [t, w], [r, s] ∈ ImA.
Then A∗ is the IVFL generated by A, i.e., A∗ = [A].

Proof. Claim 1: A∗
[r,s] = [A[r,s]], for [r, s] ∈ ImA∗.

Let [r, s] ∈ ImA∗ and let x ∈ A∗
[r,s]. Then either A∗(x) = [r, s] or

(A∗)L(x) > r and (A∗)U (x) > s.
Thus, by the definition of A∗,

x ∈ [A[r,s]] forA∗(x) = [r, s].

For (A∗)L(x) > r and (A∗)U (x) > s, let A∗(x) = [t, w]. Then, by the
definition of A∗,

x ∈ [A[t,w]] andA[t,w] ⊂ A[r,s].

Thus x ∈ [A[r,s]]. So A∗
[r,s] ⊂ [A[r,s]].

Now suppose x 6∈A∗
[r,s]. Then (A∗)(x) < r and (A∗)(x) < s. Let

A∗(x) = [t, w]. Thus,

x ∈ [A[t,w]] and x6∈[A[u,v]] for [u, v] > [t, w].

Since [r, s] > [t, w],

x ∈ [A[t,w]] and x 6∈[A[r,s]].
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So [A[r,s]] ⊂ A∗
[r,s]. Hence A∗

[r,s] = [A[r,s]].

From Theorem 4.2, it is clear that A∗ ∈ IVFL(L).

Claim 2: A ⊂ A∗. Assume that there exists x ∈ L such that A(x) =

[r, s], and AL(x) > (A∗)L(x) and AU (x) > (A∗)U (x). Let A∗(x) = [t, w].
Then

x ∈ [A[t,w]] and x6∈[A[u,v]] for [u, v] > [t, w].

Since [r, s] > [t, w], x6∈[A[r,s]]. This contracts the fact that x ∈ A[r, s].
So A ⊂ A∗.

Claim 3: A∗ is the least IVFL containing A.
Let B be any IVFL of L containing A. Suppose A∗(x) = [r, s]. Then

x ∈ [A[r,s]] and x6∈[A[t,w]] for [t, w] > [r, s].

where x is a lattice polynomial function. Thus, x can be written as

x = P (h1, h2, · · · , hk), wherehi ∈ A[r,s], i = 1, 2, · · · , k.
By induction on the rank of x and by using the definition of IVFL,

BL(x) ≥ BL(h1) ∧BL(h2) ∧ · · · ∧BL(hk)

≥ AL(h1) ∧AL(h2) ∧ · · · ∧AL(hk)

≥ r.

Similarly, we have that
BU (x) ≥ s.

So BL(x) ≥ r = (A∗)L(x) and BU (x) ≥ s = (A∗)U (x). Hence A∗ ⊂ B.
This completes the proof.

The following example is the modification of Example 3.20 in [1].
Example 4.11. Let L = N×N be the lattice in Example 4.5. We define
a mapping A : L → D(I) as follows : For each (m,n) ∈ L,

A((m,n)) = [
1

m+ n
,

1

m+ n
].

For each n ∈ N, consider the sublattice Ln of L defined as follows :

Ln = {x ∈ L : x ≤ (n, n)}.
Fig 4.1

Then, for each r ∈ N, the level subsets A[ 1
r
, 1
r
] of A are given by

A[ 1
2
, 1
2
] = {(1, 1)} = L1,

A[ 1
r
, 1
r
] = {(m,n) ∈ L : m+ n ≤ r}.
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Also, it follows that

[A[ 1
2
, 1
2
]] = A[ 1

2
, 1
2
] = L1,

[A[ 1
r
, 1
r
]] = Lr−1 for each r ∈ N (See Figure 4.2).

Fig. 4.2

On the other hand, we can easily see that A∗ = [A] is given by for each
x ∈ L,

A∗(x) = [
1

2
,
1

2
] forx ∈ L1

and

A∗(x) = [
1

n+ 1
,

1

n+ 1
] forx ∈ Ln

Ln−1
andn ≥ 2.

By the definition of A, A((3, 2)) = [15 ,
1
5 ]. But (3, 2) ∈ L3

L2
, A∗((3, 2)) =

[14 ,
1
4 ]. So A 6= A∗ and A ⊂ A∗. ¤

In a similar way as in Proposition 4.10, we can obtain the IVFI [resp.
IVFF] generated by an interval-valued fuzzy set. Here, we make use of
the result that an ideal generated by a subset H of L will be of the form
(H] = {a : a ≤ h1 + h2 + · · · + hk, n ≥ 1, hi ∈ H} (See [5]). Thus we
have the following result:

Proposition 4.12. Let A ∈ D(I)L. We define a mapping A∗ : L →
D(I) as follows : For each x ∈ L,

A∗(x) = [r, s] ifx ∈ (A[r,s]] and x6∈(A[t,w]],

where [t, w] > [r, s] for [r, s], [t, w] ∈ ImA.

Then A is the IVFI generated by A, i.e., A∗(A].

The following is the result with respect to the IVFF generated by an
IVFS.

Proposition 4.13. Let A ∈ D(I)L. We define a mapping A∗ : L →
D(I) as follows : For each x ∈ L,

A∗(x) = [r, s] ifx ∈ [A[r,s]) and x6∈[A[t,w]),

where [t, w] > [r, s] for [r, s], [t, w] ∈ ImA.

Then A is the IVFF generated by A, i.e., A∗ = [A).
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5. Interval-valued fuzzy convexity

Convex sublattices occupy an important place in lattice theory. In
this section, we extend the concept of convexity to the interval-valued
fuzzy setting and provide its characterizations. We show that an inter-
section of an IVFI and an IVFF is an interval-valued fuzzy convex sub-
lattice, and every interval-valued fuzzy convex sublattice has a unique
representation of this type. That is an interval-valued fuzzy analog of a
famous result of lattice theory.

Definition 5.1. Let A ∈ IVFL(L). Then A is said to be interval-valued
fuzzy convex (in short, IVFC ) if for each [a, b] ⊂ L, and each x ∈ [a, b],

AL(x) ≥ AL(a) ∧AL(b) and AU (x) ≥ AU (a) ∧AU (b).

We will denote the set of all interval-valued fuzzy convex sublattices of
L as IVFCL(L).

Theorem 5.2. Let A ∈IVFL(L). Then A ∈ IVFCL(L) if and only if
A[r,s] is a convex sublattice of L for each [r, s] ∈ ImA.

Proof. (⇒): Suppose A ∈ IVFCL(L). Let [r, s] ∈ ImA and let [a, b]
be any interval contained in A[r,s].
Then

AL(a) ≥ r, AU (a) ≥ s

and

AL(b) ≥ r, AU (b) ≥ s.

Thus

AL(a) ∧AL(b) ≥ r and AU (a) ∧AU (b) ≥ s.

Since A ∈ IVFCL(L), for all x ∈ [a, b],

AL(x) ≥ AL(a) ∧AL(b) and AU (x) ≥ AU (a) ∧AU (b).

So

AL(x) ≥ r and AU (x) ≥ s.

Hence x ∈ A[r,s]. Therefore A[r,s] is a convex sublattice of L.

(⇐): Suppose the necessary condition holds.
Let [a, b] be any interval in L and let

AL(a) ∧AL(b) = r and AU (a) ∧AU (b) = s.
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Then a ∈ A[r,s] and b ∈ A[r,s]. Let x ∈ [a, b]. Sice A[r,s] is a convex

sublattice of L, x ∈ A[r,s]. Thus A
L(x) ≥ r and AU (x) ≥ s. So, for each

x ∈ [a, b],

AL(x) ≥ AL(a) ∧AL(b) and AU (x) ≥ AU (a) ∧AU (b).

Hence A ∈ IVFCL(L). This complets the proof.

Proposition 5.3. In a lattice, every IVFI [resp. IVFF] is an IVFCL.

Proof. The proof is straightforward.

Proposition 5.4. Let {Aα}α∈Γ be any family of IVFCLs of L. Then⋂
α∈ΓAα ∈ IVFCL(L).

Proof. For any interval [a, b] ⊂ L, let x ∈ [a, b]. Then, by the hypoth-
esis, for each α ∈ Γ,

AL
α(x) ≥ AL

α(a) ∧AL
α(b) and AU

α (x) ≥ AU
α (a) ∧AU

α (b).

Thus
(
⋂

α∈Γ
Aα)

L(x) =
∧

α∈Γ
AL

α(x) ≥
∧

α∈Γ
[AL

α(a) ∧AL
α(b)]

= (
∧

α∈Γ
AL

α(a)) ∧ (
∧

α∈Γ
AL

α(b))

= (
⋂

α∈Γ
Aα)

L(a) ∧ (
⋂

α∈Γ
Aα)

L(b).

Similarly, we have that

(
⋂

α∈Γ
Aα)

U (x) ≥ (
⋂

α∈Γ
Aα)

U (a) ∧ (
⋂

α∈Γ
Aα)

U (b).

So,
⋂

α∈ΓAα ∈ IVFCL(L).

Result 5.A [5, Lemma 1 in p.18]. Let L be a lattice, and let H and
I be nonempty subsets of L.

(a) I is an ideal if and only if a, b ∈ I imply that a + b ∈ I, and
a ∈ I, x ∈ L, x ≤ a imply that x ∈ I.

(b) I = (H] if and only if I is an ideal, H ⊂ I, and for all x ∈ I,
there exists an integer n ≥ 1 and there exist

h0, h2, · · · , hn−1 ∈ H such that x ≤ h0 + h1 + · · ·+ hn−1.

Result 5.B [5, Lemma 6 in p. 19]. Let I be an ideal and let D be a
filter. If I ∩D 6= ∅, then I ∩D is a convex sublattice, and every convex
sublattice can be expressed in this form in one and only one way.
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Theorem 5.5 (The generalization of Result 5.B). Let A ∈ IVFI(L)
and let D ∈ IVFF(L). If A∩D 6= 0̃, then A∩D ∈ IVFCL(L), and every
IVFCL can be expressed in this form in one and only one way.

Proof. (i) From Propositions 5.3 and 5.4, it is clear that A ∩ D ∈
IVFCL(L).

(ii) Claim 1: Every IVFCL can be expressed as an intersection of
an IVFI and IVFF.

Let B ∈ IVFCL(L). Then clearly we have that B ⊂ (B] ∩ [B).
For each x ∈ L, let (B](x) = [r0, s0] and let [B)(x) = [r1, s1].
Without loss of generality, we assume that (r0, s0) ≤ (r1, s1).
Then, by Proposition 4.12,

x ∈ (B[r0,s0]] and x 6= (B[r,s]] for [r, s] > [r0, s0].

Thus, by Result 5.A (b), there exists y1 ∈ D[r0,s0] such that x ≤ y1.
Similarly,

x ∈ [B[r1,s1]] and x 6= [B[r,s]) for [r, s] > [r1, s1]

and there exists y2 ∈ B[r1,s1] such that y2 ≤ x. Since B[r1,s1] ⊂ B[r0,s0],
y1, y2 ∈ B[r0,s0]. Since B ∈ IVFCL(L), by Theorem 5.2, B[r0,s0] is a
convex sublattice of L. Then x ∈ B[r0,s0]. Thus

BL(x) ≥ r0 and BU (x) ≥ s0.

So

BL(x) ≥ (B]L(x) ∧ [B)L(x) = r0

and

BU (x) ≥ (B]L(x) ∧ [B)L(x) = s0

Hence (B] ∩ [B) ⊂ B. Therefore B = (B] ∩ [B).
Claim 2 : This representation is unique.
For any B ∈ IVFCL(L), let B = A∩D, where A ∈ IVFI(L) and D ∈

IVFF(L). We show that

A = (B] and D = [B).

Since B ⊂ A, (B] ⊂ A. Now let a ∈ L and let A(a) = [r0, s0]. Then
clearly a ∈ A[r0,s0].
Also, since B ⊂ A

B[r0,s0] ⊂ A[r0,s0].

Let b ∈ B[r0,s0]. Since A ∈ IVFI(L), by Theorem 4.6, A[r0,s0] is an ideal
of L. Then, by Result 5.A (a), we have

a+ b ∈ A[r0,s0] and b ∈ [B[r0,s0]).
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Since b ≤ a + b and [B[r0,s0]) is a filter of L, by the dual of Result 5.A
(a)

a+ b ∈ [B[r0s0]).

On the other hand, we can easily see that [B[r0,s0]) = [B)[r0,s0]. Then

[B)L(a+ b) ≥ r0 and [B)U (a+ b) ≥ s0.

Since [B) ⊂ D, we have

DL(a+ b) ≥ r0 and DU (a+ b) ≥ s0.

Thus

(A ∩D)L(a+ b) = AL(a+ b) ∧DL(a+ b) ≥ r0

and

(A ∩D)U (a+ b) = AU (a+ b) ∧DU (a+ b) ≥ s0.

So

BL(a+ b) = (A ∩D)L(a+ b) ≥ r0

and

BU (a+ b) = (A ∩D)U (a+ b) ≥ s0.

Hence a+ b ∈ B[r0,s0]. Therefore a+ b ∈ (B[r0,s0]]. Since a ≤ a+ b and
(B[r0,s0] is the ideal generated by B[r0,s0], a ∈ (B[r0,s0]]. Since (B[r0,s0]] =

(B][r0,s0], a ∈ (B][r0,s0]. Thus (B]L(a) ≥ r0 and (B]U (a) ≥ s0. So

(B]L(a) ≥ AL(a) = r0

and

(B]U (a) ≥ AU (a) = s0.

Hence A ⊂ (B]. Therefore (B] = A.

By the similar arguments, we can prove that [B) = D. Hence the
uniqueness holds. This complete the proof.
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